• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Escuela de Doctorado (ESDUVa)
    • Tesis doctorales UVa
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/43663

    Título
    Design and evaluation of mobile computer-assisted pronunciation training tools for second language learning
    Autor
    Tejedor García, CristianAutoridad UVA Orcid
    Director o Tutor
    Escudero Mancebo, DavidAutoridad UVA
    Cardeñoso Payo, ValentínAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela de Ingenierías IndustrialesAutoridad UVA
    Año del Documento
    2020
    Titulación
    Doctorado en Informática
    Résumé
    The quality of speech technology (automatic speech recognition, ASR, and textto- speech, TTS) has considerably improved and, consequently, an increasing number of computer-assisted pronunciation (CAPT) tools has included it. However, pronunciation is one area of teaching that has not been developed enough since there is scarce empirical evidence assessing the effectiveness of tools and games that include speech technology in the field of pronunciation training and teaching. This PhD thesis addresses the design and validation of an innovative CAPT system for smart devices for training second language (L2) pronunciation. Particularly, it aims to improve learner’s L2 pronunciation at the segmental level with a specific set of methodological choices, such as learner’s first and second language connection (L1– L2), minimal pairs, a training cycle of exposure–perception–production, individualistic and social approaches, and the inclusion of ASR and TTS technology. The experimental research conducted applying these methodological choices with real users validates the efficiency of the CAPT prototypes developed for the four main experiments of this dissertation. Data is automatically gathered by the CAPT systems to give an immediate specific feedback to users and to analyze all results. The protocols, metrics, algorithms, and methods necessary to statistically analyze and discuss the results are also detailed. The two main L2 tested during the experimental procedure are American English and Spanish. The different CAPT prototypes designed and validated in this thesis, and the methodological choices that they implement, allow to accurately measuring the relative pronunciation improvement of the individuals who trained with them. Both rater’s subjective scores and CAPT’s objective scores show a strong correlation, being useful in the future to be able to assess a large amount of data and reducing human costs. Results also show an intensive practice supported by a significant number of activities carried out. In the case of the controlled experiments, students who worked with the CAPT tool achieved better pronunciation improvement values than their peers in the traditional in-classroom instruction group. In the case of the challenge-based CAPT learning game proposed, the most active players in the competition kept on playing until the end and achieved significant pronunciation improvement results.
    Materias (normalizadas)
    Reconocimiento automático de voz
    Pronunciación
    Materias Unesco
    33 Ciencias Tecnológicas
    Departamento
    Departamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos)
    DOI
    10.35376/10324/43663
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/43663
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • Tesis doctorales UVa [2388]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    TESIS-1776-201110 .pdf
    Tamaño:
    3.761Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10