• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • STUDIENABSCHLUSSARBEITEN
    • Trabajos Fin de Grado UVa
    • Dokumentanzeige
    •   UVaDOC Startseite
    • STUDIENABSCHLUSSARBEITEN
    • Trabajos Fin de Grado UVa
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/44228

    Título
    Sistemas de detección de intrusos basados en técnicas de machine learning
    Autor
    Valdezate Álvarez, Gonzalo
    Director o Tutor
    Cardeñoso Payo, ValentínAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela de Ingeniería Informática de ValladolidAutoridad UVA
    Año del Documento
    2020
    Titulación
    Grado en Ingeniería Informática
    Zusammenfassung
    El número de dispositivos que utilizan Internet, así como las tareas que se realizan a través de él, aumenta cada día. También lo hacen los ataques contra la disponibilidad, integridad y confidencialidad de la información que estos manejan. Los Sistemas de Detecci ón de Intrusos (IDS) son uno de los mecanismos de seguridad más efectivos para proteger sistemas en red contra ataques informáticos, se tenga o no conocimiento previo de ellos. Destaca la aplicación de la Inteligencia Artificial y, más concretamente, del aprendizaje automático en este tipo de programas. La mayor parte de estos IDS analizan el tráfico de la red y su comportamiento normal de forma que pueden activar una alarma cuando parte de dicho tráfico difiere de lo habitual. De esta forma se puede detectar algunos tipos de ataque aunque nunca se hayan realizado antes. En este documento analizaremos qué algoritmos de aprendizaje automático son más adecuados para detectar determinados tipos de ataques basándonos en este principio.
    Palabras Clave
    Sistemas de detección de intrusos
    IDS
    Machine learning
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/44228
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Grado UVa [30962]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    TFG-G4680.pdf
    Tamaño:
    725.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10