• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • TRABAJOS FIN DE ESTUDIOS
    • Trabajos Fin de Máster UVa
    • Ver ítem
    •   UVaDOC Principal
    • TRABAJOS FIN DE ESTUDIOS
    • Trabajos Fin de Máster UVa
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/44944

    Título
    Implementación de un paquete de software para el ajuste de modelos FMM. Aplicación a la interpretación automática de la señal del electrocardiograma
    Autor
    Lamela Pérez, Adrián
    Director o Tutor
    Rueda Sabater, María CristinaAutoridad UVA
    Vivaracho Pascual, Carlos EnriqueAutoridad UVA
    Editor
    Universidad de Valladolid. Escuela de Ingeniería Informática de ValladolidAutoridad UVA
    Año del Documento
    2020
    Titulación
    Máster en Inteligencia de Negocio y Big Data en Entornos Seguros / Business Intelligence and Big Data in Cyber-Secure Environments
    Resumen
    Cyrcadian clock, cell cycle, astrophysics, are only the top of a much bigger iceberg of oscillatory signals. The study of this signals has been adressed since the decade of 90's, but it is now when the improvements of computer science allow us to achieve more results on these studies. Many models have been developed, including Cosinor methodology and some machine learning techniques. However, the rst one displays one major drawback, failing to represent a vast number of morphologies, while the second one acts as a black box with no enough precission. This work focuses on a novel approach called Frecuency Modulated Möbius (FMM) developed by the research group Inferencia con Restricciones (University of Valladolid) in 2019. It also serves as the natural sequel to a previous work of this author [6]. Three papers establish the basis of the methodology and interesting applications. The rst one describes the FMM methodology and was published in 2019 [1]. The second one studies the application of this model in an automatic analysis of electrocardiogram data, which is currently under revision [3]. The last one focuses on details of implementation, and it is still in development [2]. The author of this TFM has participated in the last two of them. Chapter 1 describes the theoretical details of FMM model and its derivations, including the multicomponent FMM model, restricted FMM model, and ECG-based FMM model. In Chapter 2, we discuss in more depth the details and implications of an automatic analysis of ECGs based on this methodology. Last Chapter is focused on practical uses of these models, and examples of use of the software developed.
    Palabras Clave
    FMM
    Modelo estadístico
    Electrocardiograma
    Departamento
    Departamento de Informática (Arquitectura y Tecnología de Computadores, Ciencias de la Computación e Inteligencia Artificial, Lenguajes y Sistemas Informáticos)
    Departamento de Estadística e Investigación Operativa
    Idioma
    spa
    URI
    http://uvadoc.uva.es/handle/10324/44944
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Máster UVa [7035]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    TFM-G1314.pdf
    Tamaño:
    1.094Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10