• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Grupos de Investigación
    • Untitled
    • GCME - Comunicaciones a congresos, conferencias, etc.
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Grupos de Investigación
    • Untitled
    • GCME - Comunicaciones a congresos, conferencias, etc.
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/45430

    Título
    Low-energy inference machine with multilevel HfO2 RRAM arrays
    Autor
    Milo, V.
    Zambelli, Cristian
    Olivo, P.
    Pérez, Eduardo
    González Ossorio, ÓscarAutoridad UVA
    Wenger, Christian
    Ielmini, Daniele
    Congreso
    49th European Solid-State Device Research Conference (ESSDERC 2019)
    Año del Documento
    2019
    Editorial
    IEEE Xplore
    Descripción
    Producción Científica
    Documento Fuente
    49th European Solid-State Device Research Conference (ESSDERC 2019). Cracovia, Polonia: IEEE Xplore, 2019, p. 174-177
    Zusammenfassung
    Recently, artificial intelligence reached impressive milestones in many machine learning tasks such as the recognition of faces, objects, and speech. These achievements have been mostly demonstrated in software running on high-performance computers, such as the graphics processing unit (GPU) or the tensor processing unit (TPU). Novel hardware with in-memory processing is however more promising in view of the reduced latency and the improved energy efficiency. In this scenario, emerging memory technologies such as phase change memory (PCM) and resistive switching memory (RRAM), have been proposed for hardware accelerators of both learning and inference tasks. In this work, a multilevel 4kbit RRAM array is used to implement a 2-layer feedforward neural network trained with the MNIST dataset. The performance of the network in the inference mode is compared with recently proposed implementations using the same image dataset demonstrating the higher energy efficiency of our hardware, thanks to low current operation and an innovative multilevel programming scheme. These results support RRAM technology for in-memory hardware accelerators of machine learning.
    Materias (normalizadas)
    Resistive RAM memory (RRAM)
    Memoria RAM resistiva (RRAM)
    Machine learning
    Aprendizaje automatizado
    Neural network
    Red neuronal
    Materias Unesco
    1203.04 Inteligencia Artificial
    ISBN
    978-1-7281-1539-9
    DOI
    10.1109/ESSDERC.2019.8901818
    Patrocinador
    German Research Foundation (grant FOR2093)
    Patrocinador
    info:eu-repo/grantAgreement/EC/H2020/648635
    Propietario de los Derechos
    https://ieeexplore.ieee.org/document/8901818
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/45430
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GCME - Comunicaciones a congresos, conferencias, etc. [12]
    Zur Langanzeige
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10