• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/45591

    Título
    Linguistic OWA and time windows based Fault Identification in wide plants
    Autor
    Sánchez-Fernández, Alvar
    Sáinz Palmero, Gregorio IsmaelAutoridad UVA Orcid
    Benítez, José Manuel
    Fuente Aparicio, María Jesús de laAutoridad UVA Orcid
    Año del Documento
    2018
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Computers & Chemical Engineering, Julio 2018, vol. 115, p. 412-430.
    Resumen
    Fault detection and diagnosis in industrial processes are challenging tasks that demand effective and timely decision making procedures. The multivariate statistical approaches for fault detection based on data have been very useful. However, they are known to be less powerful for fault diagnosis because they normally require prior knowledge of the problem involved. In this context, this proposal is based on an on-line, distributed fault isolation approach to provide a scored rank of variables considered as respon- sible for the faults in a more robust and earlier way than usual approaches. The fault isolation is carried out considering some top Fault Isolation (FI) methods, without prior knowledge regarding faults, in a distributed and collaborative way by a linguistic based decision making. The isolation of faulty variables provided by each FI approach is aggregated to provide a fault identification based on a scored ranking at two time points: after the fault detection and when the plant has recovered. In both cases, the final fault isolation is provided as a scored ranking obtained by Ordered Weighted Average operators (OWA) and Regular Increasing Monotone (RIM) aggregation functions, which permit the implementation of linguistic aggregation functions. The risk aversion during this multicriteria isolation is tuned by the user and can provide several strategies or policies. The fault isolation at two key times searches for the origin of faults and evaluates the evolution of the system after the fault’s occurrence in the new working position of the plant. This is because faults in an industrial plant are propagated to different variables due to the actions of the process controllers. This method has been applied to two complex benchmark plants obtaining an earlier and more robust isolation.
    Palabras Clave
    Fault identification
    Multicriteria decision making
    OWA operator
    Contribution plots
    ISSN
    0098-1354
    Revisión por pares
    SI
    DOI
    10.1016/j.compchemeng.2018.04.020
    Patrocinador
    Este trabajo forma parte del proyecto de investogación: MINECO/FEDER. ref: DPI2015- 67341- C2-2-R
    Version del Editor
    https://www.sciencedirect.com/science/article/abs/pii/S0098135418303417
    Propietario de los Derechos
    Elsevier
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/45591
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP44 - Artículos de revista [78]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    achemso-OWADiagnosisV08.pdf
    Tamaño:
    865.8Kb
    Formato:
    Adobe PDF
    Descripción:
    Articulo principal
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10