Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/45594
Título
Fault detection based on time series modeling and multivariate statistical process control
Autor
Año del Documento
2018
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Chemometrics and Intelligent Laboratory Systems, Noviembre 2018, vol. 182, p. 57–69
Resumo
Monitoring complex industrial plants is a very important task in order to ensure the management, reliability, safety and maintenance of the desired product quality. Early detection of abnormal events allows actions to prevent more serious consequences, improve the system's performance and reduce manufacturing costs. In this work, a new methodology for fault detection is introduced, based on time series models and statistical process control (MSPC). The proposal explicitly accounts for both dynamic and non-linearity properties of the system. A dynamic feature selection is carried out to interpret the dynamic relations by characterizing the auto- and crosscorrelations for every variable. After that, a time-series based model framework is used to obtain and validate the best descriptive model of the plant (either linear o non-linear). Fault detection is based on finding anomalies in the temporal residual signals obtained from the models by univariate and multivariate statistical process control charts. Finally, the performance of the method is validated on two benchmarks, a wastewater treatment plant and the Tennessee Eastman Plant. A comparison with other classical methods clearly demonstrates the over performance and feasibility of the proposed monitoring scheme.
Palabras Clave
Fault detection
Dynamic feature selection
Time-series modelling
Statistical process control charts
ISSN
0169-7439
Revisión por pares
SI
Patrocinador
Este trabajo forma parte del proyectos de investigación: MINECO-FEDER DPI2015-67341-C2-2- R, TIN2013-47210-P, TIN2016-81113-R
Junata de Andalucia, con el proyecto P12-TIC-2958
Junata de Andalucia, con el proyecto P12-TIC-2958
Version del Editor
Propietario de los Derechos
Elsevier
Idioma
eng
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
restrictedAccess
Aparece en las colecciones
Arquivos deste item