• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/45595

    Título
    Knowledge based recursive non-linear partial least squares (RNPLS)
    Autor
    Merino, Alejandro
    García Álvarez, DiegoAutoridad UVA Orcid
    Sáinz Palmero, Gregorio IsmaelAutoridad UVA Orcid
    Acebes Arconada, Luis FelipeAutoridad UVA Orcid
    Fuente Aparicio, María Jesús de laAutoridad UVA Orcid
    Año del Documento
    2020
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    ISA Transactons, Mayo 2020, vol. 100, p.481-494
    Resumen
    Soft sensors driven by data are very common in industrial plants to perform indirect measurements of difficult to measure critical variables by using other variables that are relatively easier to obtain. The use of soft sensors implies some challenges, such as the colinearity of the predictor variables, the time-varying and possible non-linear nature of the industrial process. To deal with the first challenge, the partial least square (PLS) regression has been employed in many applications to model the linear relations between process variables, with noisy and highly correlated data. However, the PLS model needs to deal with the other two issues: the non-linear and time-varying characteristics of the processes. In this work, a new knowledge-based methodology for a recursive non-linear PLS algorithm (RNPLS) is systematized to deal with these issues. Here, the non-linear PLS algorithm is set up by carrying out the PLS regression over the augmented input matrix, which includes knowledge based non-linear transformations of some of the variables. This transformation depends on the system’s nature, and takes into account the available knowledge about the process, which is provided by expert knowledge or emulated using software tools. Then, the recursive exponential weighted PLS is used to modify and adapt the model according to the process changes. This RNPLS algorithm has been tested using two case studies according to the available knowledge, a real industrial evaporation station of the sugar industry, where the expert knowledge about the process permits the formulation of the relationships, and a simulated wastewater treatment plant, where the necessary knowledge about the process is obtained by a software tool. The results show that the methodology involving knowledge regarding the process is able to adjust the process changes, providing highly accurate predictions.
    Palabras Clave
    Soft sensor
    Partial Least Squares
    Non-linear mapping
    Recursive estimation
    RNPLS
    ISSN
    0019-0578
    Revisión por pares
    SI
    DOI
    10.1016/j.isatra.2020.01.006
    Patrocinador
    Este trabajo forma parte del proyecto de investigación: MINECO/FEDER: DPI2015-67341-C2-2-R.
    Version del Editor
    https://www.sciencedirect.com/science/article/abs/pii/S0019057820300082
    Propietario de los Derechos
    Elsevier
    Idioma
    eng
    URI
    http://uvadoc.uva.es/handle/10324/45595
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    restrictedAccess
    Aparece en las colecciones
    • DEP44 - Artículos de revista [78]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    sensor-softwareG.pdf
    Tamaño:
    2.242Mb
    Formato:
    Adobe PDF
    Descripción:
    Articulo principal
    Thumbnail
    Visualizar/Abrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10