Por favor, use este identificador para citar o enlazar este ítem:http://uvadoc.uva.es/handle/10324/45603
Título
Monitor-While-Drilling - based estimation of rock mass rating with computational intelligence: the case of tunnel excavation front
Autor
Congreso
XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA), XIX Congreso Español sobre Tecnologías y Lógica Fuzzy
Año del Documento
2018
Editorial
F. Herrera et. al (Eds.)
Descripción Física
2p
Descripción
Producción Científica
Documento Fuente
XVIII Conferencia de la Asociación Española para la Inteligencia Artificial (CAEPIA), XIX Congreso Español sobre Tecnologías y Lógica Fuzzy, 23-26 Octubre, 2018, Granada, España. p. 231-232
Abstract
The construction of tunnels has serious geomechan-ical uncertainties involving matters of both safety and budget.Nowadays, modern machinery gathers very useful informationabout the drilling process: the so-called Monitor While Drilling(MWD) data. So, one challenge is to provide support for thetunnel construction based on thison-sitedata .Here, an MWD based methodology to support tunnel con-struction is introduced: a Rock Mass Rating (RMR) estimationis provided by an MWD rocky based characterization of theexcavation front and expert knowledge [1].Well-known machine learning (ML) and computational intel-ligence (CI) techniques are used. In addition, a collectible and“interpretable”base of knowledge is obtained, linking MWDcharacterized excavation fronts and RMR.The results from a real tunnel case show a good and serviceableperformance: the accuracy of the RMR estimations is high,Errortest∼=3%, using a generated knowledge base of 15 fuzzyrules, 3 linguistic variables and 3 linguistic terms.This proposal is, however, is open to new algorithms toreinforce its performance
Palabras Clave
Tunneling
RMR
Sofcomputing
Machine learning
SDBR
ISBN
978-84-09-05643-9
Patrocinador
Este trabajo forma parte del proyecto de investigación: MINECO/FEDER: DPI2015-67341-C2-2-R.
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item