• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/46787

    Título
    Integrating Semilinear Wave Problems with Time-Dependent Boundary Values Using Arbitrarily High-Order Splitting Methods
    Autor
    Alonso Mallo, IsaíasAutoridad UVA Orcid
    Portillo de la Fuente, Ana MaríaAutoridad UVA
    Año del Documento
    2021
    Editorial
    MDPI Mathematics
    Documento Fuente
    Mathematics. 2021; 9(10):1113. https://doi.org/10.3390/math9101113
    Abstract
    The initial boundary-value problem associated to a semilinear wave equation with time dependent boundary values was approximated by using the method of lines. Time integration is achieved by means of an explicit time method obtained from an arbitrarily high-order splitting scheme. We propose a technique to incorporate the boundary values that is more accurate than the one obtained in the standard way, which is clearly seen in the numerical experiments. We prove the consistency and convergence, with the same order of the splitting method, of the full discretization carried out with this technique. Although we performed mathematical analysis under the hypothesis that the source term was Lipschitz-continuous, numerical experiments show that this technique works in more general cases.
    Materias (normalizadas)
    65M12; 65M20; 65M22
    Materias Unesco
    65M12; 65M20; 65M22
    Palabras Clave
    splitting methods; method of lines; initial boundary-value problem; consistency; convergence
    Revisión por pares
    SI
    DOI
    10.3390/math9101113
    Patrocinador
    This research was funded by the Ministerio de Ciencia y Educación, grant number PGC2018- 101443-B-I00, and the first author by Consejería de Educación, Junta de Castilla y León y Leónand Feder funds, grant number VA193P20.
    Version del Editor
    https://www.mdpi.com/2227-7390/9/10/1113
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/46787
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP51 - Artículos de revista [145]
    Show full item record
    Files in this item
    Nombre:
    2021mathematics-09-01113-v3.pdf
    Tamaño:
    433.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10