Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/48465
Título
Integration of Computer Vision and Wireless Networks to Provide Indoor Positioning
Autor
Año del Documento
2019
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Sensors, 2019, vol. 19, n. 24, 5495
Résumé
This work presents an integrated Indoor Positioning System which makes use of WiFi signals and RGB cameras, such as surveillance cameras, to track and identify people navigating in complex indoor environments. Previous works have often been based on WiFi, but accuracy is limited. Other works use computer vision, but the problem of identifying concrete persons relies on such techniques as face recognition, which are not useful if there are many unknown people, or where the robustness decreases when individuals are seen from different points of view. The solution presented in this paper is based on an accurate combination of smartphones along with RGB cameras, such as those used in surveillance infrastructures. WiFi signals from smartphones allow the persons present in the environment to be identified uniquely, while the data coming from the cameras allow the precision of location to be improved. The system is nonintrusive, and biometric data about subjects is not required. In this paper, the proposed method is fully described and experiments performed to test the system are detailed along with the results obtained.
Palabras Clave
Indoor positioning
Posicionamiento en interiores
RGB cameras
Cámaras RGB
WiFi
Wireless networks
Redes inalámbricas
ISSN
1424-8220
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia, Innovación y Universidades (grant RTI2018-096652-B-I00)
Junta de Castilla y León (grant VA233P18)
Ministerio de Economía, Industria y Competitividad (project DPI2016-77677-P)
Comunidad de Madrid (project S2018/NMT-4331)
Junta de Castilla y León (grant VA233P18)
Ministerio de Economía, Industria y Competitividad (project DPI2016-77677-P)
Comunidad de Madrid (project S2018/NMT-4331)
Version del Editor
Propietario de los Derechos
© 2019 MDPI
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional