Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/48472
Título
Optimization and improvement of a robotics gaze control system using LSTM networks
Año del Documento
2021
Editorial
Springer Link
Descripción
Producción Científica
Documento Fuente
Multimedia Tools and Applications, 2021. 18 p.
Resumen
Gaze control represents an important issue in the interaction between a robot and humans. Specifically, deciding who to pay attention to in a multi-party conversation is one way to improve the naturalness of a robot in human-robot interaction. This control can be carried out by means of two different models that receive the stimuli produced by the participants in an interaction, either an on-center off-surround competitive network or a recurrent neural network. A system based on a competitive neural network is able to decide who to look at with a smooth transition in the focus of attention when significant changes in stimuli occur. An important aspect in this process is the configuration of the different parameters of such neural network. The weights of the different stimuli have to be computed to achieve human-like behavior. This article explains how these weights can be obtained by solving an optimization problem. In addition, a new model using a recurrent neural network with LSTM layers is presented. This model uses the same set of stimuli but does not require its weighting. This new model is easier to train, avoiding manual configurations, and offers promising results in robot gaze control. The experiments carried out and some results are also presented.
Palabras Clave
Humanoid robots
Robots humanoides
Computer vision
Visión artificial
Recurrent neural networks
Redes neuronales recurrentes
ISSN
1380-7501
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia, Innovación y Universidades (project TI2018-096652-B-I00)
Junta de Castilla y León - Fondo Europeo de Desarrollo Regional (grant VA233P18)
Junta de Castilla y León - Fondo Europeo de Desarrollo Regional (grant VA233P18)
Version del Editor
Propietario de los Derechos
© 2021 Springer
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional