Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/48540
Título
Differential stability properties in convex scalar and vector optimization
Año del Documento
2021
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Set-Valued and Variational Analysis, 2021
Resumen
This paper focuses on formulas for the ε-subdifferential of the optimal value function of
scalar and vector convex optimization problems. These formulas can be applied when the
set of solutions of the problem is empty. In the scalar case, both unconstrained problems and
problems with an inclusion constraint are considered. For the last ones, limiting results are
derived, in such a way that no qualification conditions are required. The main mathematical
tool is a limiting calculus rule for the ε-subdifferential of the sum of convex and lower
semicontinuous functions defined on a (non necessarily reflexive) Banach space. In the
vector case, unconstrained problems are studied and exact formulas are derived by linear
scalarizations. These results are based on a concept of infimal set, the notion of cone proper
set and an ε-subdifferential for convex vector functions due to Taa.
Materias Unesco
12 Matemáticas
Palabras Clave
Differential stability
Limiting calculus rule
Optimization
ISSN
1877-0533
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación and Fondo Europeo de Desarrollo Regional (MCI/AEI/FEDER, UE) under project (PID2020-112491GB-I00)
Version del Editor
Propietario de los Derechos
© 2021 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Atribución 4.0 Internacional