• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/48585

    Título
    Machine learning in medical emergencies: a systematic review and analysis
    Autor
    Robles Mendo, Inés
    Marques, Gonçalo
    Torre Díez, Isabel de laAutoridad UVA
    López-Coronado Sánchez-Fortún, MiguelAutoridad UVA Orcid
    Martín Rodríguez, FranciscoAutoridad UVA Orcid
    Año del Documento
    2021
    Editorial
    Springer
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Medical Systems, 2021, vol. 45, n. 10
    Resumen
    Despite the increasing demand for artifcial intelligence research in medicine, the functionalities of his methods in health emergency remain unclear. Therefore, the authors have conducted this systematic review and a global overview study which aims to identify, analyse, and evaluate the research available on diferent platforms, and its implementations in healthcare emergencies. The methodology applied for the identifcation and selection of the scientifc studies and the diferent applications consist of two methods. On the one hand, the PRISMA methodology was carried out in Google Scholar, IEEE Xplore, PubMed ScienceDirect, and Scopus. On the other hand, a review of commercial applications found in the best-known commercial platforms (Android and iOS). A total of 20 studies were included in this review. Most of the included studies were of clinical decisions (n=4, 20%) or medical services or emergency services (n=4, 20%). Only 2 were focused on m-health (n=2, 10%). On the other hand, 12 apps were chosen for full testing on dif ferent devices. These apps dealt with pre-hospital medical care (n=3, 25%) or clinical decision support (n=3, 25%). In total, half of these apps are based on machine learning based on natural language processing. Machine learning is increasingly applicable to healthcare and ofers solutions to improve the efciency and quality of healthcare. With the emergence of mobile health devices and applications that can use data and assess a patient's real-time health, machine learning is a growing trend in the healthcare industry.
    Materias Unesco
    32 Ciencias Médicas
    33 Ciencias Tecnológicas
    Palabras Clave
    Machine learning
    Health emergencies
    Emergency medicine
    Mobile applications
    ISSN
    0148-5598
    Revisión por pares
    SI
    DOI
    10.1007/s10916-021-01762-3
    Patrocinador
    Comisión Europea y Ministerio de Industria, Energía y Turismo (under project AAL-20125036 named BWetake Care: ICTbased)
    Version del Editor
    https://link.springer.com/article/10.1007/s10916-021-01762-3
    Propietario de los Derechos
    © 2021 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/48585
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Machine-learning-medical-emergencies.pdf
    Tamaño:
    2.194Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10