• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • TRABAJOS FIN DE ESTUDIOS
    • Trabajos Fin de Grado UVa
    • Ver ítem
    •   UVaDOC Principal
    • TRABAJOS FIN DE ESTUDIOS
    • Trabajos Fin de Grado UVa
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/48724

    Título
    Computer Vision system for rock classification using Artificial Neural Network
    Autor
    Bernal Martínez, Antonio
    Director o Tutor
    Fuente López, Eusebio de laAutoridad UVA
    Wim Claes
    Editor
    Universidad de Valladolid. Escuela de Ingenierías IndustrialesAutoridad UVA
    Año del Documento
    2021
    Titulación
    Grado en Ingeniería en Electrónica Industrial y Automática
    Resumen
    This project has been proposed by the Nijst company, located in Belgium. This company works with natural stone tiles and cobblestones. One of its activities is the purchase of large quantities of old road stones at very low prices, however the problem is that these stones, come in batches with different types mixed. At the moment, there are two operators in charge of the manual sorting, and the objectives are to reduce sorting time and costs. This project explores the design of a computer vision system that is able to classify between the different types of cobblestones on a conveyor belt and separate them into different boxes. To carry out the recognition part, a computer vision system with a camera and lighting inside a black box, was designed. Additionally, a python script based on the OpenCV library was written, to detect the cobblestone and track it. After that, a Artificial Neural Network (ANN) was trained with histogram features such as, weighted mean, skewness, and kurtosis to classify the different types of cobblestones. Finally, for the separation part, a script was made with PLC programming so that when the rock passes next to its corresponding box, an actuator would push it inside. Overall, it is concluded that due to the high classification accuracy, the correct performance of the system, and the extraordinary profitability, this project that has been carried out has been a success, heralding the promising future of artificial neural networks for classification tasks.
    Materias Unesco
    3310 Tecnología Industrial
    Palabras Clave
    Neural Network
    Computer Vision
    Classification
    Cobblestone
    Departamento
    Departamento de Ingeniería de Sistemas y Automática
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/48724
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Grado UVa [30857]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    TFG-I-2035.pdf
    Tamaño:
    8.230Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10