• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/49024

    Título
    A neural network potential for searching the atomic structures of pure and mixed nanoparticles. Application to ZnMg nanoalloys with an eye on their anticorrosive properties
    Autor
    Álvarez Zapatero, PabloAutoridad UVA Orcid
    Vega Hierro, AndrésAutoridad UVA Orcid
    Aguado Rodríguez, AndrésAutoridad UVA Orcid
    Año del Documento
    2021
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Acta Materialia, 2021, vol. 220, 117341
    Zusammenfassung
    The accurate description of the potential energy landscape of moderate-sized nanoparticles is a formidable task, but of paramount importance if one aims to characterize, in a realistic way, their physical and chemical properties. We present here a Neural Network potential able to predict structures of pure and mixed nanoparticles with an error in energy and forces of the order of chemical accuracy as compared with the values provided by the theoretical method used in the training process, in our case the density functional theory. The neural network is integrated into a basin-hopping algorithm which dynamically feeds the training process. The main ingredients of the neural network algorithm as well as the protocol used for its implementation and training are detailed, with particular emphasis on those aspects that make it so efficient and transferable. As a first test, we have applied it to the determination of the global minimum structures of ZnMg nanoalloys with up to 52 atoms and stoichiometries corresponding to MgZn and MgZn, of special interest in the context of anticorrosive coatings. We present and discuss the structural properties, chemical order, stability and pertinent electronic indicators, and we extract some conclusions on fundamental aspects that may be at the roots of the good performance of ZnMg nanoalloys as protective coatings. Finally, we comment on the step forward that the presented machine learning approach constitutes, both in the fact that it allows to accurately explore the potential energy surface of systems that other methodologies can not, and that it opens new prospects for a variety of problems in Materials Science.
    Palabras Clave
    Atomistic simulations
    Simulaciones atomísticas
    Artificial neural networks
    Redes neuronales artificiales
    Density functional theory
    Teoría del funcional de densidad
    Magnesium alloys
    Aleaciones de magnesio
    ISSN
    1359-6454
    Revisión por pares
    SI
    DOI
    10.1016/j.actamat.2021.117341
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (project PGC2018-093745-B-I00)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1359645421007217?via%3Dihub
    Propietario de los Derechos
    © 2021 Elsevier
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/49024
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • PNM - Artículos de revistas [30]
    • DEP33 - Artículos de revista [199]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    Neural-network-potential.pdf
    Tamaño:
    2.148Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10