Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/49038
Título
Surjectivity of the asymptotic borel map in Carleman–Roumieu ultraholomorphic classes defined by regular sequences
Año del Documento
2021
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, vol.115, n. 4, p. 1-18
Abstract
We study the surjectivity of, and the existence of right inverses for, the asymptotic Borel map
in Carleman–Roumieu ultraholomorphic classes defined by regular sequences in the sense
of E. M. Dyn’kin. We extend previous results by J. Schmets and M. Valdivia, by V. Thilliez,
and by the authors, and show the prominent role played by an index, associated with the
sequence, that was introduced by V. Thilliez. The techniques involve regular variation, integral
transforms and characterization results of A. Debrouwere in a half-plane, stemming from his
study of the surjectivity of the moment mapping in general Gelfand–Shilov spaces.
Materias Unesco
12 Matemáticas
Palabras Clave
Carleman ultraholomorphic classes
Asymptotic expansions
Laplace transform
Regular variation
ISSN
1578-7303
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad (project MTM2016-77642-C2-1-P)
Ministerio de Ciencia y Innovación (project PID2019-105621GB-I00)
Austrian Science Fund (projects FWFP32905- N y P33417-N)
Ministerio de Ciencia y Innovación (project PID2019-105621GB-I00)
Austrian Science Fund (projects FWFP32905- N y P33417-N)
Version del Editor
Propietario de los Derechos
© 2021 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional