• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/50948

    Título
    Brain-computer interface channel selection optimization using meta-heuristics and evolutionary algorithms
    Autor
    Martínez Cagigal, VíctorAutoridad UVA Orcid
    SantaMaría Vazquez, EduardoAutoridad UVA
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Año del Documento
    2021
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Applied Soft Computing, 2021, vol. 115, 108176
    Resumen
    Many brain–computer interface (BCI) studies overlook the channel optimization due to its inherent complexity. However, a careful channel selection increases the performance and users’ comfort while reducing the cost of the system. Evolutionary meta-heuristics, which have demonstrated their usefulness in solving complex problems, have not been fully exploited yet in this context. The purpose of the study is two-fold: (1) to propose a novel algorithm to find an optimal channel set for each user and compare it with other existing meta-heuristics; and (2) to establish guidelines for adapting these optimization strategies to this framework. A total of 3 single-objective (GA, BDE, BPSO) and 4 multi-objective (NSGA-II, BMOPSO, SPEA2, PEAIL) existing algorithms have been adapted and tested with 3 public databases: ‘BCI competition III–dataset II’, ‘Center Speller’ and ‘RSVP Speller’. Dual-Front Sorting Algorithm (DFGA), a novel multi-objective discrete method especially designed to the BCI framework, is proposed as well. Results showed that all meta-heuristics outperformed the full set and the common 8-channel set for P300-based BCIs. DFGA showed a significant improvement of accuracy of 3.9% over the latter using also 8 channels; and obtained similar accuracies using a mean of 4.66 channels. A topographic analysis also reinforced the need to customize a channel set for each user. Thus, the proposed method computes an optimal set of solutions with different number of channels, allowing the user to select the most appropriate distribution for the next BCI sessions.
    Palabras Clave
    Brain-computer interfaces
    Interfaces cerebro-computadora
    Evolutionary algorithms
    Algoritmos evolutivos
    ISSN
    1568-4946
    Revisión por pares
    SI
    DOI
    10.1016/j.asoc.2021.108176
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades (project RTC2019-007350-1)
    Comisión Europea (project 0702_MIGRAINEE_2_E)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1568494621010292?via%3Dihub
    Propietario de los Derechos
    © 2021 Elsevier
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/50948
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Brain–computer-interface-channel.pdf
    Tamaño:
    4.552Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10