• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/51778

    Título
    Robust asynchronous control of ERP-Based brain-Computer interfaces using deep learning
    Autor
    SantaMaría Vazquez, EduardoAutoridad UVA
    Martínez Cagigal, VíctorAutoridad UVA Orcid
    Pérez Velasco, SergioAutoridad UVA
    Marcos Martínez, DiegoAutoridad UVA
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Año del Documento
    2022
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Computer Methods and Programs in Biomedicine, 2022, vol. 215, 106623
    Abstract
    Background and Objective. Brain-computer interfaces (BCI) based on event-related potentials (ERP) are a promising technology for alternative and augmented communication in an assistive context. However, most approaches to date are synchronous, requiring the intervention of a supervisor when the user wishes to turn his attention away from the BCI system. In order to bring these BCIs into real-life applications, a robust asynchronous control of the system is required through monitoring of user attention. Despite the great importance of this limitation, which prevents the deployment of these systems outside the laboratory, it is often overlooked in research articles. This study was aimed to propose a novel method to solve this problem, taking advantage of deep learning for the first time in this context to overcome the limitations of previous strategies based on hand-crafted features. Methods. The proposed method, based on EEG-Inception, a novel deep convolutional neural network, divides the problem in 2 stages to achieve the asynchronous control: (i) the model detects user’s control state, and (ii) decodes the command only if the user is attending to the stimuli. Additionally, we used transfer learning to reduce the calibration time, even exploring a calibration-less approach. Results. Our method was evaluated with 22 healthy subjects, analyzing the impact of the calibration time and number of stimulation sequences on the system’s performance. For the control state detection stage, we report average accuracies above 91% using only 1 sequence of stimulation and 30 calibration trials, reaching a maximum of 96.95% with 15 sequences. Moreover, our calibration-less approach also achieved suitable results, with a maximum accuracy of 89.36%, showing the benefits of transfer learning. As for the overall asynchronous system, which includes both stages, the maximum information transfer rate was 35.54 bpm, a suitable value for high-speed communication. Conclusions. The proposed strategy achieved higher performance with less calibration trials and stimulation sequences than former approaches, representing a promising step forward that paves the way for more practical applications of ERP-based spellers.
    Palabras Clave
    Brain-computer interfaces
    Interfaces cerebro-computadora
    Deep learning
    Aprendizaje inteligente
    ISSN
    0169-2607
    Revisión por pares
    SI
    DOI
    10.1016/j.cmpb.2022.106623
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (grants PID2020-115468RB-I00 and RTC2019-007350-1)
    Comisión Europea - Fondo Europeo de Desarrollo Regional (cooperation programme Interreg V-A Spain-Portugal POCTEP 2014–2020)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0169260722000086?via%3Dihub
    Propietario de los Derechos
    © 2022 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/51778
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP71 - Artículos de revista [358]
    Show full item record
    Files in this item
    Nombre:
    Robust-asynchronous-control.pdf
    Tamaño:
    2.228Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10