• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/52450

    Título
    MAFC: Multi-Agent Fog Computing Model for Healthcare Critical Tasks Management
    Autor
    Awad Mutlag, Ammar
    Abd Ghani, Mohd Khanapi
    Mohammed, Mazin Abed
    Maashi, Mashael S.
    Mohd, Othman
    Mostafa, Salama
    Abdulkareem, Karrar Hameed
    Marques, Gonçalo
    Torre Díez, Isabel de laAutoridad UVA Orcid
    Año del Documento
    2020
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Sensors, 2020, vol. 20, n. 7, 1853
    Zusammenfassung
    In healthcare applications, numerous sensors and devices produce massive amounts of data which are the focus of critical tasks. Their management at the edge of the network can be done by Fog computing implementation. However, Fog Nodes suffer from lake of resources That could limit the time needed for final outcome/analytics. Fog Nodes could perform just a small number of tasks. A difficult decision concerns which tasks will perform locally by Fog Nodes. Each node should select such tasks carefully based on the current contextual information, for example, tasks’ priority, resource load, and resource availability. We suggest in this paper a Multi-Agent Fog Computing model for healthcare critical tasks management. The main role of the multi-agent system is mapping between three decision tables to optimize scheduling the critical tasks by assigning tasks with their priority, load in the network, and network resource availability. The first step is to decide whether a critical task can be processed locally; otherwise, the second step involves the sophisticated selection of the most suitable neighbor Fog Node to allocate it. If no Fog Node is capable of processing the task throughout the network, it is then sent to the Cloud facing the highest latency. We test the proposed scheme thoroughly, demonstrating its applicability and optimality at the edge of the network using iFogSim simulator and UTeM clinic data.
    Palabras Clave
    Fog computing
    Computación en niebla
    ISSN
    1424-8220
    Revisión por pares
    SI
    DOI
    10.3390/s20071853
    Version del Editor
    https://www.mdpi.com/1424-8220/20/7/1853
    Propietario de los Derechos
    © 2020 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/52450
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    MAFC-multi-agent-fog-computing-model.pdf
    Tamaño:
    3.913Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Atribución 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10