Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/52583
Título
A synergetic approach to burned area mapping using maximum entropy modeling trained with hyperspectral data and VIIRS hotspots
Año del Documento
2020
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Remote Sensing, 2020, vol. 12, n. 5, 858
Zusammenfassung
Southern European countries, particularly Spain, are greatly affected by forest fires each year. Quantification of burned area is essential to assess wildfire consequences (both ecological and socioeconomic) and to support decision making in land management. Our study proposed a new synergetic approach based on hotspots and reflectance data to map burned areas from remote sensing data in Mediterranean countries. It was based on a widely used species distribution modeling algorithm, in particular the Maximum Entropy (MaxEnt) one-class classifier. Additionally, MaxEnt identifies variables with the highest contribution to the final model. MaxEnt was trained with hyperspectral indexes (from Earth-Observing One (EO-1) Hyperion data) and hotspot information (from Visible Infrared Imaging Radiometer Suite Near Real-Time 375 m active fire product). Official fire perimeter measurements by Global Positioning System acted as a ground reference. A highly accurate burned area estimation (overall accuracy = 0.99%) was obtained, and the indexes which most contributed to identifying burned areas included Simple Ratio (SR), Red Edge Normalized Difference Vegetation Index (NDVI750), Normalized Difference Water Index (NDWI), Plant Senescence Reflectance Index (PSRI), and Normalized Burn Ratio (NBR). We concluded that the presented methodology enables accurate burned area mapping in Mediterranean ecosystems and may easily be automated and generalized to other ecosystems and satellite sensors.
Materias Unesco
33 Ciencias Tecnológicas
Palabras Clave
Mediterranean ecosystems
Ecosistemas mediterráneos
ISSN
2072-4292
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad (grant AGL2017-86075-C2-1-R)
Junta de Castilla y León (project LE001P17)
Junta de Castilla y León (project LE001P17)
Version del Editor
Propietario de los Derechos
© 2020 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional