Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/53032
Título
Genetic algorithm methodology for the estimation of generated power and harmonic content in photovoltaic generation
Autor
Año del Documento
2020
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Applied Sciences, 2020, vol. 10, n. 2, 542
Resumo
Renewable generation sources like photovoltaic plants are weather dependent and it is hard to predict their behavior. This work proposes a methodology for obtaining a parameterized model that estimates the generated power in a photovoltaic generation system. The proposed methodology uses a genetic algorithm to obtain the mathematical model that best fits the behavior of the generated power through the day. Additionally, using the same methodology, a mathematical model is developed for harmonic distortion estimation that allows one to predict the produced power and its quality. Experimentation is performed using real signals from a photovoltaic system. Eight days from different seasons of the year are selected considering different irradiance conditions to assess the performance of the methodology under different environmental and electrical conditions. The proposed methodology is compared with an artificial neural network, with the results showing an improved performance when using the genetic algorithm methodology.
Palabras Clave
Genetic algorithms
Algoritmos genéticos
Photovoltaic systems
Sistema fotovoltaicos
ISSN
2076-3417
Revisión por pares
SI
Patrocinador
CONACYT (scholarship 415315)
FOFI –UAQ 2018 (project FIN201812)
PRODEP (project UAQ-PTC-385)
FOFI –UAQ 2018 (project FIN201812)
PRODEP (project UAQ-PTC-385)
Version del Editor
Propietario de los Derechos
© 2020 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Exceto quando indicado o contrário, a licença deste item é descrito como Atribución 4.0 Internacional