Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/54088
Título
Spatially heterogeneous tubular scaffolds for In situ heart valve tissue engineering using melt electrowriting
Autor
Año del Documento
2022
Editorial
Wiley
Descripción
Producción Científica
Documento Fuente
Advanced Functional Materials, 2022, vol. 32, n. 21
Abstract
Heart valve tissue engineering (HVTE) aims to provide living autologous heart valve implants endowed with regenerative capabilities and life-long durability. However, fabrication of biomimetic scaffolds capable of providing the required functionality in terms of mechanical performance and tunable porosity to enable cellular infiltration remains a major challenge. Here, the additive manufacturing of bioinspired, spatially heterogeneous, tubular scaffolds enclosing the leaflets, inter-leaflet triangles, and their interface for in situ HVTE using melt electrowriting (MEW) is demonstrated. The innovative platform enables the digital fabrication of scaffolds with ad hoc architecture (e.g., tunable location, specific fiber pattern, and orientation) and customizable geometry via a custom-made control software. The user-friendly interface allows for the definition of areas of the scaffold with specific patterns to obtain properties such as tunable J-shaped stress–stain curve and anisotropy typical of the heart valve leaflet, compliant inter-leaflet triangles, and reinforced curvilinear boundary between them. Heterogeneous, tubular, heart valve MEW scaffolds are then embedded with a microporous elastin-like recombinamer (ELR) hydrogel to develop a soft-network composite favoring cell infiltration and ensuring hemocompatibility. The acute systolic hemodynamic functionality of the MEW/ELR composite satisfies the ISO 5840 requirements, under aortic and pulmonary conditions.
Materias Unesco
22 Física
24 Ciencias de la Vida
32 Ciencias Médicas
Palabras Clave
Tubular scaffolds
Tissue engineering
Electrowriting
ISSN
1616-301X
Revisión por pares
SI
Patrocinador
Australian Research Council (ARC ITTC in Additive Biomanufacturing, IC160100026)
German Research Foundation (DFG – Project number: 403170227 ArchiTissue)
The START-Program of the Medical Faculty of RWTH Aachen University (60/17)
Gobierno de España (PID2019-110709RB-100, RED2018-102417-T)
Junta de Castilla y León (VA317P18, Infrared2018-UVA06)
Interreg V España-Portugal POCTEP (0624_2IQBIONEURO_6_E)
German Research Foundation (DFG – Project number: 403170227 ArchiTissue)
The START-Program of the Medical Faculty of RWTH Aachen University (60/17)
Gobierno de España (PID2019-110709RB-100, RED2018-102417-T)
Junta de Castilla y León (VA317P18, Infrared2018-UVA06)
Interreg V España-Portugal POCTEP (0624_2IQBIONEURO_6_E)
Version del Editor
Propietario de los Derechos
© 2022 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional