• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/54123

    Título
    A predictive hybrid reduced order model based on proper orthogonal decomposition combined with deep learning architectures
    Autor
    Abadía Heredia, R.
    López Martín, ManuelAutoridad UVA
    Carro Martínez, BelénAutoridad UVA Orcid
    Arribas Sánchez, Juan IgnacioAutoridad UVA Orcid
    Pérez, José Miguel
    Le Clainche, Soledad
    Año del Documento
    2022
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Expert Systems with Applications, 2022, vol. 187, p. 115910
    Résumé
    Solving computational fluid dynamics problems requires using large computational resources. The computa- tional time and memory requirements to solve realistic problems vary from a few hours to several weeks with several processors working in parallel. Motivated by the need of reducing such large amount of resources (improving the industrial applications in which fluid dynamics plays a key role), this article introduces a new predictive Reduced Order Model (ROM) applied to solve fluid dynamics problems. The model is based on physical principles and combines modal decompositions with deep learning architectures. The hybrid ROM, reduces the dimensionality of a database via proper orthogonal decomposition (POD), extracting the dominant features leading the flow dynamics of the problem studied. The number of degrees of freedom are reduced from hundred thousands spatial points describing the database to a few (20–100) POD modes. Firstly, POD divides the spatio-temporal data into spatial modes and temporal coefficients (or temporal modes). Next, the temporal coefficients are integrated in time using convolutional or recurrent neural networks. The temporal evolution of the flow is approximated after combining the spatial modes with the new temporal coefficients computed. The model is tested in two complex problems of fluid dynamics, the three-dimensional wake of a circular cylinder and a synthetic jet. The hybrid ROM uses data from the initial transient stage of numerical simulations to predict the temporally converged solution of the flow with high accuracy. The speed-up factor comparing the time necessary to obtain the predicted solution using the hybrid ROM and the numerical solver is ∼140–348 in the synthetic jet and ∼2897–3818 in the three dimensional cylinder wake. The robustness shown in the results presented and the data-driven nature of this ROM, make it possible to extend its application to other fields (i.e. video and language processing, robotics, finances)
    Materias Unesco
    33 Ciencias Tecnológicas
    12 Matemáticas
    Palabras Clave
    Reduced order models
    Deep learning architectures
    POD
    Modal decompositions
    Neural networks
    Fluid dynamics
    ISSN
    0957-4174
    Revisión por pares
    SI
    DOI
    10.1016/j.eswa.2021.115910
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades Proyectos de I+D+i ‘‘Retos investigación’’, (grant RTI2018-098958- B-I00)
    Ministerio de Ciencia e Innovación y el Fondo Europeo de Desarrollo Regionales (FEDER) (grant PID2020-114173RB-I00)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0957417421012653
    Propietario de los Derechos
    © 2021 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/54123
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    A-predictive-hybrid-reduced.pdf
    Tamaño:
    7.178Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Atribución 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10