Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/54157
Título
Novel data-driven models applied to short-term electric load forecasting
Autor
Año del Documento
2021
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Applied Sciences, 2021, vol. 11, n. 12, p. 5708
Zusammenfassung
This work brings together and applies a large representation of the most novel forecasting
techniques, with origins and applications in other fields, to the short-term electric load forecasting
problem. We present a comparison study between different classic machine learning and deep
learning techniques and recent methods for data-driven analysis of dynamical models (dynamic
mode decomposition) and deep learning ensemble models applied to short-term load forecasting.
This work explores the influence of critical parameters when performing time-series forecasting,
such as rolling window length, k-step ahead forecast length, and number/nature of features used to
characterize the information used as predictors. The deep learning architectures considered include
1D/2D convolutional and recurrent neural networks and their combination, Seq2seq with and
without attention mechanisms, and recent ensemble models based on gradient boosting principles.
Three groups of models stand out from the rest according to the forecast scenario: (a) deep learning
ensemble models for average results, (b) simple linear regression and Seq2seq models for very
short-term forecasts, and (c) combinations of convolutional/recurrent models and deep learning
ensemble models for longer-term forecasts.
Materias Unesco
33 Ciencias Tecnológicas
3325 Tecnología de las Telecomunicaciones
Palabras Clave
Short-term electric load forecasting
Deep learning
Machine learning
Deep learning additive ensemble model
Dynamic mode decomposition
ISSN
2076-3417
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia, Innovación y Universidades Proyectos de I+D+i ‘‘Retos investigación’’, (grant RTI2018-098958- B-I00)
Version del Editor
Propietario de los Derechos
© 2021 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional