• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/54210

    Título
    Network intrusion detection based on extended RBF neural network with offline reinforcement learning
    Autor
    López Martín, ManuelAutoridad UVA
    Sánchez Esguevillas, Antonio JavierAutoridad UVA Orcid
    Arribas Sánchez, Juan IgnacioAutoridad UVA Orcid
    Carro Martínez, BelénAutoridad UVA Orcid
    Año del Documento
    2021
    Editorial
    Institute of Electrical and Electronics Engineers
    Descripción
    Producción Científica
    Documento Fuente
    IEEE Access, 2021, vol. 9, p. 153153-153170
    Abstract
    Network intrusion detection focuses on classifying network traffic as either normal or attack carrier. The classification is based on information extracted from the network flow packets. This is a complex classification problem with unbalanced datasets and noisy data. This work extends the classic radial basis function (RBF) neural network by including it as a policy network in an offline reinforcement learning algorithm. With this approach, all parameters of the radial basis functions (along with the network weights) are learned end-to-end by gradient descent without external optimization. We further explore how additional dense hidden-layers, and the number of radial basis kernels influence the results. This novel approach is applied to five prominent intrusion detection datasets (NSL-KDD, UNSW-NB15, AWID, CICIDS2017 and CICDDOS2019) achieving better performance metrics than alternative state-of-the-art models. Each dataset provides different restrictions and challenges allowing a better validation of results. Analysis of the results shows that the proposed architectures are excellent candidates for designing classifiers with the constraints imposed by network intrusion detection. We discuss the importance of dataset imbalance and how the proposed methods may be critically important for unbalanced datasets.
    Materias Unesco
    33 Ciencias Tecnológicas
    3325 Tecnología de las Telecomunicaciones
    Palabras Clave
    Communication system security
    intrusion detection
    Neural networks
    Radial basis function networks
    Network intrusion detection
    ISSN
    2169-3536
    Revisión por pares
    SI
    DOI
    10.1109/ACCESS.2021.3127689
    Patrocinador
    Ministerio de Ciencia, Innovación y Universidades Proyectos de I+D+i ‘‘Retos investigación’’, (grant RTI2018-098958- B-I00)
    Version del Editor
    https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9612220
    Propietario de los Derechos
    © 2021 IEEE
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/54210
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP71 - Artículos de revista [358]
    Show full item record
    Files in this item
    Nombre:
    Network-intrusion-detection-based-extended.pdf
    Tamaño:
    4.952Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10