• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/54263

    Título
    Detection of early stages of Alzheimer’s disease based on MEG activity with a randomized convolutional neural network
    Autor
    López Martín, ManuelAutoridad UVA
    Nevado, Ángel
    Carro Martínez, BelénAutoridad UVA Orcid
    Año del Documento
    2020
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Artificial Intelligence in Medicine Volume 107, 2020, 101924
    Résumé
    The early detection of Alzheimer’s disease can potentially make eventual treatments more effective. This work presents a deep learning model to detect early symptoms of Alzheimer’s disease using synchronization measures obtained with magnetoencephalography. The proposed model is a novel deep learning architecture based on an ensemble of randomized blocks formed by a sequence of 2D-convolutional, batch-normalization and pooling layers. An important challenge is to avoid overfitting, as the number of features is very high (25755) compared to the number of samples (132 patients). To address this issue the model uses an ensemble of identical sub-models all sharing weights, with a final stage that performs an average across sub-models. To facilitate the exploration of the feature space, each sub-model receives a random permutation of features. The features correspond to magnetic signals reflecting neural activity and are arranged in a matrix structure interpreted as a 2D image that is processed by 2D convolutional networks. The proposed detection model is a binary classifier (disease/non-disease), which compared to other deep learning architectures and classic machine learning classifiers, such as random forest and support vector machine, obtains the best classification performance results with an average F1-score of 0.92. To perform the comparison a strict validation procedure is proposed, and a thorough study of results is provided.
    Materias Unesco
    2490 Neurociencias
    Palabras Clave
    Neural network
    Red neuronal
    Alzheimer
    Magnetoencephalography
    ISSN
    0933-3657
    Revisión por pares
    SI
    DOI
    10.1016/j.artmed.2020.101924
    Patrocinador
    Ministerio de Ciencia e Innovación (Project PSI2015-68793-C3-1-R)
    Ministerio de Ciencia e Innovación (Project RTI2018-098958-B-I00)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0933365720300749?via%3Dihub#!
    Propietario de los Derechos
    © 2020 Elsevier
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/54263
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Detection-early-stages-Alzheimer.pdf
    Tamaño:
    1.756Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10