• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/54301

    Título
    Adversarial environment reinforcement learning algorithm for intrusion detection
    Autor
    Caminero Fernández, Guillermo
    López Martín, ManuelAutoridad UVA
    Carro Martínez, BelénAutoridad UVA Orcid
    Año del Documento
    2019
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Computer Networks Volume 159, 2019, Pages 96-109
    Abstract
    Intrusion detection is a crucial service in today’s data networks, and the search for new fast and robust algorithms that are capable of detecting and classifying dangerous traffic is essential to deal with changing threats and increasing detection difficulty. In this work, we present a new intrusion detection algorithm with an excellent prediction performance. The prediction is based on a classifier which is a simple and extremely fast neural network. The classifier implements a policy function that is trained with a novel reinforcement learning model, where the behavior of the environment is adjusted in parallel with the learning process. Intrusion detection frameworks are based on a supervised learning paradigm that uses a training dataset composed of network features and associated intrusion labels. In this work, we integrate this paradigm with a reinforcement learning algorithm that is normally based on interaction with a live environment (not a pre-recorded dataset). To perform the integration, the live environment is replaced by a simulated one. The principle of this approach is to provide the simulated environment with an intelligent behavior by, first, generating new samples by randomly extracting them from the training dataset, generating rewards that depend on the goodness of the classifier's predictions, and, second, by further adjusting this initial behavior with an adversarial objective in which the environment will actively try to increase the difficulty of the prediction made by the classifier. In this way, the simulated environment acts as a second agent in an adversarial configuration against the original agent (the classifier). We prove that this architecture increases the final performance of the classifier. This work presents the first application of adversarial reinforcement learning for intrusion detection, and provides a novel technique that incorporates the environment's behavior into the learning process of a modified reinforcement learning algorithm. We prove that the proposed algorithm is adequate for a supervised learning problem based on a labeled dataset. We validate its performance by comparing it with other well-known machine learning models for two datasets. The proposed model outperforms the other models in the weighted Accuracy (>0.8) and F1 (>0.79) metrics, and especially excels in the results for the under-represented labels.
    Materias Unesco
    3325 Tecnología de las Telecomunicaciones
    Palabras Clave
    Intrusion detection
    Detección de intrusos
    Data networks
    Redes de datos
    ISSN
    1389-1286
    Revisión por pares
    SI
    DOI
    10.1016/j.comnet.2019.05.013
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1389128618311216?via%3Dihub
    Propietario de los Derechos
    © 2020 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/54301
    Tipo de versión
    info:eu-repo/semantics/submittedVersion
    Derechos
    openAccess
    Collections
    • DEP71 - Artículos de revista [358]
    Show full item record
    Files in this item
    Nombre:
    Adversarial-environment-reinforcement-learning.pdf
    Tamaño:
    1.079Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10