• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Laboratorios de Investigación
    • Laboratorio de Procesado de Imagen (LPI)
    • LPI - Artículos de Revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Laboratorios de Investigación
    • Laboratorio de Procesado de Imagen (LPI)
    • LPI - Artículos de Revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/55594

    Título
    Efficient convolution-based pairwise elastic image registration on three multimodal similarity metrics
    Autor
    Menchon Lara, Rosa MaríaAutoridad UVA
    Simmross Wattenberg, Federico JesúsAutoridad UVA Orcid
    Rodríguez Cayetano, ManuelAutoridad UVA Orcid
    Casaseca de la Higuera, Juan PabloAutoridad UVA Orcid
    Martín Fernández, Miguel AngelAutoridad UVA Orcid
    Alberola López, CarlosAutoridad UVA Orcid
    Año del Documento
    2023
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Signal Processing, 2023, vol. 202, 108771
    Abstract
    This paper proposes a complete convolutional formulation for 2D multimodal pairwise image registration problems based on free-form deformations. We have reformulated in terms of discrete 1D convolutions the evaluation of spatial transformations, the regularization term, and their gradients for three different multimodal registration metrics, namely, normalized cross correlation, mutual information, and normalized mutual information. A sufficient condition on the metric gradient is provided for further extension to other metrics. The proposed approach has been tested, as a proof of concept, on contrast-enhanced first-pass perfusion cardiac magnetic resonance images. Execution times have been compared with the corresponding execution times of the classical tensor product formulation, both on CPU and GPU. The speed-up achieved by using convolutions instead of tensor products depends on the image size and the number of control points considered, the larger those magnitudes, the greater the execution time reduction. Furthermore, the speed-up will be more significant when gradient operations constitute the major bottleneck in the optimization process.
    Materias (normalizadas)
    Multimodal registration
    Registro multimodal
    Convolution
    Convolución
    Non-rigid registration
    Registro no rígido
    Materias Unesco
    3325 Tecnología de las Telecomunicaciones
    ISSN
    0165-1684
    Revisión por pares
    SI
    DOI
    10.1016/j.sigpro.2022.108771
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (grants TEC2017-82408-R and PID2020-115339RB-I00)
    ESAOTE Ltd (grant 18IQBM)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0165168422003103?via%3Dihub
    Propietario de los Derechos
    © 2022 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/55594
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • LPI - Artículos de Revista [9]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Efficient-convolution-based-pairwise.pdf
    Tamaño:
    2.490Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10