• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Física Teórica, Atómica y Óptica
    • DEP33 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/55664

    Título
    A modified Lyapunov method and its applications to ODE
    Autor
    Lara, Luis Pedro
    Gadella Urquiza, ManuelAutoridad UVA Orcid
    Año del Documento
    2022
    Editorial
    Wiley
    Descripción
    Producción Científica
    Documento Fuente
    Mathematical Methods in the Applied Sciences, 2022.
    Abstract
    Here, we propose a method to obtain local analytic approximate solutions of ordinary differential equations with variable coefficients, or even some nonlinear equations, inspired in the Lyapunov method, where instead of polynomial approximations, we use truncated Fourier series with variable coefficients as approximate solutions. In the case of equations admitting periodic solutions, an averaging over the coefficients gives global solutions. We show that, under some restrictive condition, the method is equivalent to the Picard-Lindelöf method. After some numerical experiments showing the efficiency of the method, we apply it to equations of interest in physics, in which we show that our method possesses an excellent precision even with low iterations.
    Materias Unesco
    22 Física
    12 Matemáticas
    Palabras Clave
    Lyapunov method
    Ordinary differential equations
    Nonlinear equations
    ISSN
    0170-4214
    Revisión por pares
    SI
    DOI
    10.1002/mma.8598
    Patrocinador
    Ministerio de Ciencia e Innovación with funding from the European Union NextGenerationEU (PRTRC17.I1)
    Ministerio de Ciencia e Innovación project (PID2020-113406GB-I00)
    Version del Editor
    https://onlinelibrary.wiley.com/doi/10.1002/mma.8598
    Propietario de los Derechos
    © 2022 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/55664
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP33 - Artículos de revista [198]
    Show full item record
    Files in this item
    Nombre:
    Modified-Lyapunov-method.pdf
    Tamaño:
    439.3Kb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10