Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/55664
Título
A modified Lyapunov method and its applications to ODE
Año del Documento
2022
Editorial
Wiley
Descripción
Producción Científica
Documento Fuente
Mathematical Methods in the Applied Sciences, 2022.
Résumé
Here, we propose a method to obtain local analytic approximate solutions of ordinary differential equations with variable coefficients, or even some nonlinear equations, inspired in the Lyapunov method, where instead of polynomial approximations, we use truncated Fourier series with variable coefficients as approximate solutions. In the case of equations admitting periodic solutions, an averaging over the coefficients gives global solutions. We show that, under some restrictive condition, the method is equivalent to the Picard-Lindelöf method. After some numerical experiments showing the efficiency of the method, we apply it to equations of interest in physics, in which we show that our method possesses an excellent precision even with low iterations.
Materias Unesco
22 Física
12 Matemáticas
Palabras Clave
Lyapunov method
Ordinary differential equations
Nonlinear equations
ISSN
0170-4214
Revisión por pares
SI
DOI
Patrocinador
Ministerio de Ciencia e Innovación with funding from the European Union NextGenerationEU (PRTRC17.I1)
Ministerio de Ciencia e Innovación project (PID2020-113406GB-I00)
Ministerio de Ciencia e Innovación project (PID2020-113406GB-I00)
Version del Editor
Propietario de los Derechos
© 2022 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional