• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir
    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Tecnología Electrónica
    • DEP69 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Tecnología Electrónica
    • DEP69 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/55854

    Título
    Vegetation and soil fire damage analysis based on species distribution modeling trained with multispectral satellite data
    Autor
    Quintano Pastor, María del CarmenAutoridad UVA Orcid
    Fernández Manso, Alfonso
    Calvo, Leonor
    Roberts, Dar A.
    Año del Documento
    2019
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Remote Sensing, 2019, vol. 11, n. 15, 1832
    Résumé
    Forest managers demand reliable tools to evaluate post-fire vegetation and soil damage. In this study, we quantify wildfire damage to vegetation and soil based on the analysis of burn severity, using multitemporal and multispectral satellite data and species distribution models, particularly maximum entropy (MaxEnt). We studied a mega-wildfire (9000 ha burned) in North-Western Spain, which occurred from 21 to 27 August 2017. Burn severity was measured in the field using the composite burn index (CBI). Burn severity of vegetation and soil layers (CBIveg and CBIsoil) was also differentiated. MaxEnt provided the relative contribution of each pre-fire and post-fire input variable on low, moderate and high burn severity levels, as well as on all severity levels combined (burned area). In addition, it built continuous suitability surfaces from which the burned surface area and burn severity maps were built. The burned area map achieved a high accuracy level (κ = 0.85), but slightly lower accuracy when differentiating the three burn severity classes (κ = 0.81). When the burn severity map was validated using field CBIveg and CBIsoil values we reached lower κ statistic values (0.76 and 0.63, respectively). This study revealed the effectiveness of the proposed multi-temporal MaxEnt based method to map fire damage accurately in Mediterranean ecosystems, providing key information to forest managers.
    ISSN
    2072-4292
    Revisión por pares
    SI
    DOI
    10.3390/rs11151832
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (project 559 AGL2017-86075-C2-1-R)
    Junta de Castilla y León (project LE001P17)
    Ministerio de Educación, Cultura y Deporte (grants PRX17/00234 and PRX17/00133)
    Version del Editor
    https://www.mdpi.com/2072-4292/11/15/1832
    Propietario de los Derechos
    © 2019 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/55854
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP69 - Artículos de revista [32]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Vegetation-soil-fire-damage.pdf
    Tamaño:
    3.506Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Atribución 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10