Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/55854
Título
Vegetation and soil fire damage analysis based on species distribution modeling trained with multispectral satellite data
Año del Documento
2019
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Remote Sensing, 2019, vol. 11, n. 15, 1832
Résumé
Forest managers demand reliable tools to evaluate post-fire vegetation and soil damage. In this study, we quantify wildfire damage to vegetation and soil based on the analysis of burn severity, using multitemporal and multispectral satellite data and species distribution models, particularly maximum entropy (MaxEnt). We studied a mega-wildfire (9000 ha burned) in North-Western Spain, which occurred from 21 to 27 August 2017. Burn severity was measured in the field using the composite burn index (CBI). Burn severity of vegetation and soil layers (CBIveg and CBIsoil) was also differentiated. MaxEnt provided the relative contribution of each pre-fire and post-fire input variable on low, moderate and high burn severity levels, as well as on all severity levels combined (burned area). In addition, it built continuous suitability surfaces from which the burned surface area and burn severity maps were built. The burned area map achieved a high accuracy level (κ = 0.85), but slightly lower accuracy when differentiating the three burn severity classes (κ = 0.81). When the burn severity map was validated using field CBIveg and CBIsoil values we reached lower κ statistic values (0.76 and 0.63, respectively). This study revealed the effectiveness of the proposed multi-temporal MaxEnt based method to map fire damage accurately in Mediterranean ecosystems, providing key information to forest managers.
ISSN
2072-4292
Revisión por pares
SI
Patrocinador
Ministerio de Economía, Industria y Competitividad (project 559 AGL2017-86075-C2-1-R)
Junta de Castilla y León (project LE001P17)
Ministerio de Educación, Cultura y Deporte (grants PRX17/00234 and PRX17/00133)
Junta de Castilla y León (project LE001P17)
Ministerio de Educación, Cultura y Deporte (grants PRX17/00234 and PRX17/00133)
Version del Editor
Propietario de los Derechos
© 2019 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional