• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/56437

    Título
    Prediction models to control aging time in red wine
    Autor
    Astray, Gonzalo
    Mejuto, Juan Carlos
    Martínez Martínez, Víctor
    Nevares Domínguez, Ignacio GerardoAutoridad UVA Orcid
    Álamo Sanza, María delAutoridad UVA Orcid
    Simal Gandara, Jesus
    Año del Documento
    2019
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Molecules, 2019, vol. 24, n. 5, 826
    Résumé
    A combination of physical-chemical analysis has been used to monitor the aging of red wines from D.O. Toro (Spain). The changes in the chemical composition of wines that occur over the aging time can be used to distinguish between wine samples collected after one, four, seven and ten months of aging. Different computational models were used to develop a good authenticity tool to certify wines. In this research, different models have been developed: Artificial Neural Network models (ANNs), Support Vector Machine (SVM) and Random Forest (RF) models. The results obtained for the ANN model developed with sigmoidal function in the output neuron and the RF model permit us to determine the aging time, with an average absolute percentage deviation below 1%, so it can be concluded that these two models have demonstrated their capacity to predict the age of wine.
    Palabras Clave
    Wine
    Vino
    Prediction models
    Modelos predictivos
    ISSN
    1420-3049
    Revisión por pares
    SI
    DOI
    10.3390/molecules24050826
    Patrocinador
    Programa de Cooperación Interreg V-A España–Portugal (POCTEP) 2014-2020 (project 0377_IBERPHENOL_6_E)
    Xunta de Galicia (postdoctoral grant POS-B/2016/001)
    Version del Editor
    https://www.mdpi.com/1420-3049/24/5/826
    Propietario de los Derechos
    © 2019 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/56437
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP42 - Artículos de revista [291]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Prediction-models-control-aging-time.pdf
    Tamaño:
    862.2Ko
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Atribución 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10