• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/56882

    Título
    Conditional variational autoencoder for prediction and feature recovery applied to intrusion detection in loT
    Autor
    López Martín, ManuelAutoridad UVA
    Carro Martínez, BelénAutoridad UVA Orcid
    Sánchez Esguevillas, Antonio JavierAutoridad UVA Orcid
    Lloret, Jaime
    Año del Documento
    2017
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Sensors, 2017, vol. 17, n. 9, p. 1967
    Abstract
    The purpose of a Network Intrusion Detection System is to detect intrusive, malicious activities or policy violations in a host or host’s network. In current networks, such systems are becoming more important as the number and variety of attacks increase along with the volume and sensitiveness of the information exchanged. This is of particular interest to Internet of Things networks, where an intrusion detection system will be critical as its economic importance continues to grow, making it the focus of future intrusion attacks. In this work, we propose a new network intrusion detection method that is appropriate for an Internet of Things network. The proposed method is based on a conditional variational autoencoder with a specific architecture that integrates the intrusion labels inside the decoder layers. The proposed method is less complex than other unsupervised methods based on a variational autoencoder and it provides better classification results than other familiar classifiers. More important, the method can perform feature reconstruction, that is, it is able to recover missing features from incomplete training datasets. We demonstrate that the reconstruction accuracy is very high, even for categorical features with a high number of distinct values. This work is unique in the network intrusion detection field, presenting the first application of a conditional variational autoencoder and providing the first algorithm to perform feature recovery.
    Materias Unesco
    33 Ciencias Tecnológicas
    Palabras Clave
    Intrusion detection
    Variational methods
    Conditional variational autoencoder
    Feature recovery
    Neural networks
    Revisión por pares
    SI
    DOI
    10.3390/s17091967
    Patrocinador
    Ministerio de Economía y Competitividad y el Fondo de Desarrollo Regional (FEDER) dentro del proyecto “Distribución inteligente de servicios multimedia utilizando redes cognitivas adaptativas definidas por software”, Ref: TIN2014-57991-C3-1-P
    Ministerio de Economía y Competitividad y el Fondo de Desarrollo Regional (FEDER) dentro del proyecto “Inteligencia distribuida para el control y adaptación de redes dinámicas definidas por software", Ref: TIN2014-57991-C3-2-P
    Version del Editor
    https://www.mdpi.com/1424-8220/17/9/1967
    Propietario de los Derechos
    © 2017 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/56882
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP71 - Artículos de revista [358]
    Show full item record
    Files in this item
    Nombre:
    Conditional-variational-autoencoder.pdf
    Tamaño:
    4.621Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10