• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/57244

    Título
    Short-term load forecasting for microgrids based on artificial neural networks
    Autor
    Hernández Callejo, LuisAutoridad UVA Orcid
    Baladrón García, CarlosAutoridad UVA
    Aguiar Pérez, Javier ManuelAutoridad UVA Orcid
    Carro Martínez, BelénAutoridad UVA Orcid
    Sánchez Esguevillas, Antonio JavierAutoridad UVA Orcid
    Lloret, Jaime
    Año del Documento
    2013
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Energies, 2013, vol. 6, n. 3, p. 1385-1408
    Abstract
    Electricity is indispensable and of strategic importance to national economies. Consequently, electric utilities make an effort to balance power generation and demand in order to offer a good service at a competitive price. For this purpose, these utilities need electric load forecasts to be as accurate as possible. However, electric load depends on many factors (day of the week, month of the year, etc.), which makes load forecasting quite a complex process requiring something other than statistical methods. This study presents an electric load forecast architectural model based on an Artificial Neural Network (ANN) that performs Short-Term Load Forecasting (STLF). In this study, we present the excellent results obtained, and highlight the simplicity of the proposed model. Load forecasting was performed in a geographic location of the size of a potential microgrid, as microgrids appear to be the future of electric power supply.
    Materias Unesco
    33 Ciencias Tecnológicas
    Palabras Clave
    Artificial neural network
    Distributed intelligence
    Short-term electric load forecasting
    Smart grid
    Microgrid
    Multilayer perceptron
    Revisión por pares
    SI
    DOI
    10.3390/en6031385
    Version del Editor
    https://www.mdpi.com/1996-1073/6/3/1385
    Propietario de los Derechos
    © 2013 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/57244
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Short-term-load-forecasting.pdf
    Tamaño:
    1.064Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Attribution 3.0 UnportedLa licencia del ítem se describe como Attribution 3.0 Unported

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10