Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/57386
Título
Automated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairment
Autor
Año del Documento
2018
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Entropy, 2018, vol. 20, n. 1, p. 35
Abstract
The discrimination of early Alzheimer’s disease (AD) and its prodromal form (i.e., mild
cognitive impairment, MCI) from cognitively healthy control (HC) subjects is crucial since the
treatment is more effective in the first stages of the dementia. The aim of our study is to evaluate the
usefulness of a methodology based on electroencephalography (EEG) to detect AD and MCI. EEG
rhythms were recorded from 37 AD patients, 37 MCI subjects and 37 HC subjects. Artifact-free trials
were analyzed by means of several spectral and nonlinear features: relative power in the conventional
frequency bands, median frequency, individual alpha frequency, spectral entropy, Lempel–Ziv
complexity, central tendency measure, sample entropy, fuzzy entropy, and auto-mutual information.
Relevance and redundancy analyses were also conducted through the fast correlation-based filter
(FCBF) to derive an optimal set of them. The selected features were used to train three different
models aimed at classifying the trials: linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA) and multi-layer perceptron artificial neural network (MLP). Afterwards, each subject
was automatically allocated in a particular group by applying a trial-based majority vote procedure.
After feature extraction, the FCBF method selected the optimal set of features: individual alpha
frequency, relative power at delta frequency band, and sample entropy. Using the aforementioned
set of features, MLP showed the highest diagnostic performance in determining whether a subject is
not healthy (sensitivity of 82.35% and positive predictive value of 84.85% for HC vs. all classification
task) and whether a subject does not suffer from AD (specificity of 79.41% and negative predictive
value of 84.38% for AD vs. all comparison). Our findings suggest that our methodology can help
physicians to discriminate AD, MCI and HC.
Materias Unesco
12 Matemáticas
32 Ciencias Médicas
Palabras Clave
Alzheimer’s disease
Mild cognitive impairment
Electroencephalography (EEG)
Spectral analysis
Nonlinear analysis
Multiclass classification approach
Revisión por pares
SI
Patrocinador
Ministerio de Economía y Competitividad y “Fondo Europeo de Desarrollo Regional” (FEDER) proyecto “Análisis y obtención del genoma entre el completo y la actividad cerebral para la ayuda en el diagnóstico de la enfermedad de Alzheimer” (“Programa de Cooperación Interreg V-A España-Portugal, POCTEP 2014–2020”),(underl proyect TEC2014-53196-R)
Junta de Castilla y León - Consejería de Educación y FEDER en el marco del proyecto VA037U16.
Junta de Castilla y León - Consejería de Educación y FEDER en el marco del proyecto VA037U16.
Version del Editor
Propietario de los Derechos
© 2018 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
La licencia del ítem se describe como Atribución 4.0 Internacional