• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Voir le document
    •   Accueil de UVaDOC
    • PUBLICATIONS SCIENTIFIQUES
    • Departamentos
    • Dpto. Estadística e Investigación Operativa
    • DEP24 - Artículos de revista
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/57491

    Título
    Robust fuzzy clustering of time series based on B-splines
    Autor
    D'Urso, Pierpaolo
    García Escudero, Luis ÁngelAutoridad UVA Orcid
    De Giovanni, Livia
    Vitale, Vincenzina
    Mayo Iscar, AgustínAutoridad UVA Orcid
    Año del Documento
    2021
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    International Journal of Approximate Reasoning, 136, 223-246.
    Résumé
    Four different approaches to robust fuzzy clustering of time series are presented and compared with respect to other existent approaches. These approaches are useful to cluster time series when outlying values are found in these time series, which is often the rule in most real data applications. Arepresentation of the time series by using B-splines is considered and, later, robust fuzzy clustering methods are applied on the B-splines fitted coefficients. Feasible algorithms for implementing these methodologies are presented. Asimulation study shows how these methods are useful to deal with contaminating time series and also switching time series due to fuzziness. A real data analysis example on financial data is also presented.
    Revisión por pares
    SI
    DOI
    10.1016/j.ijar.2021.06.010
    Patrocinador
    Spanish Ministerio de Economía y Competitividad, grant MTM2017-86061-C2-1-P, and by Consejería de Educación de la Junta de Castilla y León and FEDER, grant VA005P17 and VA002G18.
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/57491
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP24 - Artículos de revista [79]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    Fuzzy_web.pdf
    Tamaño:
    5.159Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10