• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/57639

    Título
    Improved short-term load forecasting based on two-stage predictions with artificial neural networks in a microgrid environment
    Autor
    Hernández Callejo, LuisAutoridad UVA Orcid
    Baladrón García, CarlosAutoridad UVA
    Aguiar Pérez, Javier ManuelAutoridad UVA Orcid
    Calavia, Lorena
    Carro Martínez, BelénAutoridad UVA Orcid
    Sánchez Esguevillas, Antonio JavierAutoridad UVA Orcid
    Sanjuán, Javier
    González, Álvaro
    Lloret, Jaime
    Año del Documento
    2013
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Energies, 2013, vol. 6, n. 9, p. 4489-4507
    Abstract
    Short-Term Load Forecasting plays a significant role in energy generation planning, and is specially gaining momentum in the emerging Smart Grids environment, which usually presents highly disaggregated scenarios where detailed real-time information is available thanks to Communications and Information Technologies, as it happens for example in the case of microgrids. This paper presents a two stage prediction model based on an Artificial Neural Network in order to allow Short-Term Load Forecasting of the following day in microgrid environment, which first estimates peak and valley values of the demand curve of the day to be forecasted. Those, together with other variables, will make the second stage, forecast of the entire demand curve, more precise than a direct, single-stage forecast. The whole architecture of the model will be presented and the results compared with recent work on the same set of data, and on the same location, obtaining a Mean Absolute Percentage Error of 1.62% against the original 2.47% of the single stage model.
    Materias Unesco
    33 Ciencias Tecnológicas
    Palabras Clave
    Artificial Neural Networks (ANN)
    Short-term load forecasting
    Microgrids
    Multilayer perceptron
    ISSN
    1999-4907
    Revisión por pares
    SI
    DOI
    10.3390/en6094489
    Version del Editor
    https://www.mdpi.com/1996-1073/6/9/4489
    Propietario de los Derechos
    © 2013 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/57639
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Improved-short-term-load.pdf
    Tamaño:
    1.131Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Attribution 3.0 UnportedLa licencia del ítem se describe como Attribution 3.0 Unported

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10