• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/57642

    Título
    Experimental analysis of the input variables’ relevance to forecast next day’s aggregated electric demand using neural networks
    Autor
    Hernández Callejo, LuisAutoridad UVA Orcid
    Baladrón García, CarlosAutoridad UVA
    Aguiar Pérez, Javier ManuelAutoridad UVA Orcid
    Calavia, Lorena
    Carro Martínez, BelénAutoridad UVA Orcid
    Sánchez Esguevillas, Antonio JavierAutoridad UVA Orcid
    García, Pablo
    Lloret, Jaime
    Año del Documento
    2013
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Energies, 2013, vol. 6, n. 6, p. 2927-2948
    Resumo
    Thanks to the built in intelligence (deployment of new intelligent devices and sensors in places where historically they were not present), the Smart Grid and Microgrid paradigms are able to take advantage from aggregated load forecasting, which opens the door for the implementation of new algorithms to seize this information for optimization and advanced planning. Therefore, accuracy in load forecasts will potentially have a big impact on key operation factors for the future Smart Grid/Microgrid-based energy network like user satisfaction and resource saving, and new methods to achieve an efficient prediction in future energy landscapes (very different from the centralized, big area networks studied so far). This paper proposes different improved models to forecast next day’s aggregated load using artificial neural networks, taking into account the variables that are most relevant. In particular, seven models based on the multilayer perceptron will be proposed, progressively adding input variables after analyzing the influence of climate factors on aggregated load. The results section presents the forecast from the proposed models, obtained from real data.
    Materias Unesco
    33 Ciencias Tecnológicas
    Palabras Clave
    Artificial Neural Networks (ANN)
    Aggregated load
    Smart grid
    Microgrids
    Multilayer perceptron
    ISSN
    1996-1073
    Revisión por pares
    SI
    DOI
    10.3390/en6062927
    Version del Editor
    https://www.mdpi.com/1996-1073/6/6/2927
    Propietario de los Derechos
    © 2013 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/57642
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Experimental-analysis-input-variables.pdf
    Tamaño:
    3.570Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution 3.0 UnportedExceto quando indicado o contrário, a licença deste item é descrito como Attribution 3.0 Unported

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10