Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/58735
Título
Fault detection of wind turbine induction generators through current signals and various signal processing techniques
Autor
Año del Documento
2020
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Appl. Sci. 2020, vol.10, n. 21, 7389
Zusammenfassung
In the wind industry (WI), a robust and effective maintenance system is essential. To minimize the maintenance cost, a large number of methodologies and mathematical models for predictive maintenance have been developed. Fault detection and diagnosis are carried out by processing and analyzing various types of signals, with the vibration signal predominating. In addition, most of the published proposals for wind turbine (WT) fault detection and diagnosis have used simulations and test benches. Based on previous work, this research report focuses on fault diagnosis, in this case using the electrical signal from an operating WT electric generator and applying various signal analysis and processing techniques to compare the effectiveness of each. The WT used for this research is 20 years old and works with a squirrel-cage induction generator (SCIG) which, according to the wind farm control systems, was fault-free. As a result, it has been possible to verify the feasibility of using the current signal to detect and diagnose faults through spectral analysis (SA) using a fast Fourier transform (FFT), periodogram, spectrogram, and scalogram.
Materias (normalizadas)
Ingeniería
Tecnología
Materias Unesco
3306 Ingeniería y Tecnología Eléctricas
Palabras Clave
Wind turbine
Electric generator
Fault diagnosis
Turbina eólica
Generador eléctrico
Diagnóstico erróneo
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
© 2020 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Attribution-NonCommercial-NoDerivatives 4.0 Internacional