• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Ingeniería Eléctrica
    • DEP45 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Ingeniería Eléctrica
    • DEP45 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/58908

    Título
    Mutual information and meta-heuristic classifiers applied to bearing fault diagnosis in three-phase induction motors
    Autor
    Bazán, Gustavo Henrique
    Goedtel, Alessandro
    Castoldi, Marcelo Favoretto
    Godoy, Wagner Fontes
    Duque Pérez, ÓscarAutoridad UVA Orcid
    Moríñigo Sotelo, DanielAutoridad UVA Orcid
    Año del Documento
    2020
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Applied Sciences, 2021, Vol. 11, Nº. 1, 314
    Abstract
    Three-phase induction motors are extensively used in industrial processes due to their robustness, adaptability to different operating conditions, and low operation and maintenance costs. Induction motor fault diagnosis has received special attention from industry since it can reduce process losses and ensure the reliable operation of industrial systems. Therefore, this paper presents a study on the use of meta-heuristic tools in the diagnosis of bearing failures in induction motors. The extraction of the fault characteristics is performed based on mutual information measurements between the stator current signals in the time domain. Then, the Artificial Bee Colony algorithm is used to select the relevant mutual information values and optimize the pattern classifier input data. To evaluate the classification accuracy under various levels of failure severity, the performance of two different pattern classifiers was compared: The C4.5 decision tree and the multi-layer artificial perceptron neural networks. The experimental results confirm the effectiveness of the proposed approach.
    Materias (normalizadas)
    Electric motors
    Pattern recognition
    Materias Unesco
    3306 Ingeniería y Tecnología Eléctricas
    3306.03 Motores Eléctricos
    Palabras Clave
    Bearing failure diagnosis
    Artificial bee colony
    ISSN
    2076-3417
    Revisión por pares
    SI
    DOI
    10.3390/app11010314
    Patrocinador
    Consejo Nacional de Desarrollo Científico y Tecnológico - (processes 474290/2008-5, 473576/2011-2, 552269/2011-5, 201902/2015-0 and 405228/2016-3)
    Version del Editor
    https://www.mdpi.com/2076-3417/11/1/314
    Propietario de los Derechos
    © 2020 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/58908
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP45 - Artículos de revista [47]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Mutual-Information-and-Meta-Heuristic-Classifiers-Applied-to Bearing-Fault-Diagnosis.pdf
    Tamaño:
    485.9Kb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10