Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/58921
Título
Bifurcation theory of attractors and minimal sets in d-concave nonautonomous scalar ordinary differential equations
Año del Documento
2023
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Journal of Differential Equations, 2023, vol. 361, p. 138-182
Abstract
Two one-parametric bifurcation problems for scalar nonautonomous ordinary differential equations are analyzed assuming the coercivity of the time-dependent function determining the equation and the concavity of its derivative with respect to the state variable. The skewproduct formalism leads to the analysis of the number and properties of the minimal sets and of the shape of the global attractor, whose abrupt variations determine the occurrence of local saddle-node, local transcritical and global pitchfork bifurcation points of minimal sets and of discontinuity points of the global attractor.
Materias (normalizadas)
Matemáticas
Álgebra
Ecuaciones diferenciales
Materias Unesco
12 Matemáticas
Palabras Clave
Nonautonomous dynamical systems
D-concave scalar ODEs
Bifurcation theory
Minimal sets
Sistemas dinámicos no autónomos
EDO escalares D-cóncavas
Teoría de la bifurcación
Conjuntos mínimos
ISSN
0022-0396
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia, Innovación - Ministerio de Universidades (RTI2018- 096523-B-I00)
Universidad de Valladolid (PIP-TCESC-2020)
Ministerio de Universidades (FPU20/01627)
Universidad de Valladolid (PIP-TCESC-2020)
Ministerio de Universidades (FPU20/01627)
Propietario de los Derechos
© 2023 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional