• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Grupos de Investigación
    • Grupo de Ingeniería Biomédica
    • GIB - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/58999

    Título
    Assessment of airflow and oximetry signals to detect pediatric sleep apnea-hypopnea syndrome using AdaBoost
    Autor
    Jimenez García, JorgeAutoridad UVA Orcid
    Gutierrez Tobal, Gonzalo CésarAutoridad UVA Orcid
    García Gadañón, MaríaAutoridad UVA Orcid
    Kheirandish Gozal, Leila
    Martín Montero, AdriánAutoridad UVA
    Álvarez González, DanielAutoridad UVA Orcid
    Campo Matias, Félix delAutoridad UVA Orcid
    Gozal, David
    Hornero Sánchez, RobertoAutoridad UVA Orcid
    Año del Documento
    2020
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Entropy, 2020, vol. 22, n. 6, 670
    Resumo
    The reference standard to diagnose pediatric Obstructive Sleep Apnea (OSA) syndrome is an overnight polysomnographic evaluation. When polysomnography is either unavailable or has limited availability, OSA screening may comprise the automatic analysis of a minimum number of signals. The primary objective of this study was to evaluate the complementarity of airflow (AF) and oximetry (SpO2) signals to automatically detect pediatric OSA. Additionally, a secondary goal was to assess the utility of a multiclass AdaBoost classifier to predict OSA severity in children. We extracted the same features from AF and SpO2 signals from 974 pediatric subjects. We also obtained the 3% Oxygen Desaturation Index (ODI) as a common clinically used variable. Then, feature selection was conducted using the Fast Correlation-Based Filter method and AdaBoost classifiers were evaluated. Models combining ODI 3% and AF features outperformed the diagnostic performance of each signal alone, reaching 0.39 Cohens’s kappa in the four-class classification task. OSA vs. No OSA accuracies reached 81.28%, 82.05% and 90.26% in the apnea–hypopnea index cutoffs 1, 5 and 10 events/h, respectively. The most relevant information from SpO2 was redundant with ODI 3%, and AF was complementary to them. Thus, the joint analysis of AF and SpO2 enhanced the diagnostic performance of each signal alone using AdaBoost, thereby enabling a potential screening alternative for OSA in children.
    Materias (normalizadas)
    Pediatría
    Pneumology/Respiratory System
    Materias Unesco
    32 Ciencias Médicas
    Palabras Clave
    Sleep apnea–hypopnea syndrome
    Oximetry
    AdaBoost
    Airflow
    Síndrome de apnea-hipopnea del sueño
    Oximetría
    Flujo de aire
    Revisión por pares
    SI
    DOI
    10.3390/e22060670
    Patrocinador
    Ministerio de Ciencia e Innovación - FEDER (DPI2017-84280-R y RTC-2017-6516-1)
    Comisión Europea - FEDER (Programa de Cooperación Interreg V-A España-Portugal POCTEP 2014–2020)
    Ministerio de Ciencia e Innovación - Ministerio de Universidades (PRE2018-085219)
    US National Institutes of Health (grants HL130984 and HL140548)
    Version del Editor
    https://www.mdpi.com/1099-4300/22/6/670
    Propietario de los Derechos
    © 2020 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/58999
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • GIB - Artículos de revista [36]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Assessment-of-Airflow-and-Oximetry-Signals.pdf
    Tamaño:
    2.601Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10