Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59046
Título
Estimation of bearing fault severity in line-connected and inverter-fed three-phase induction motors
Autor
Año del Documento
2020
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Energies 2020, vol. 13, n. 13, 3481
Zusammenfassung
This paper addresses a comprehensive evaluation of a bearing fault evolution and its consequent prediction concerning the remaining useful life. The proper prediction of bearing faults in their early stage is a crucial factor for predictive maintenance and mainly for the production management schedule. The detection and estimation of the progressive evolution of a bearing fault are performed by monitoring the amplitude of the current signals at the time domain. Data gathered from line-fed and inverter-fed three-phase induction motors were used to validate the proposed approach. To assess classification accuracy and fault estimation, the models described in this paper are investigated by using Artificial Neural Networks models. The paper also provides process flowcharts and classification tables to present the prognostic models used to estimate the remaining useful life of a defective bearing. Experimental results confirmed the method robustness and provide an accurate diagnosis regardless of the bearing fault stage, motor speed, load level, and type of supply.
Materias (normalizadas)
Ingeniería eléctrica
Materias Unesco
3313 Tecnología E Ingeniería Mecánicas
3306 Ingeniería y Tecnología Eléctricas
Palabras Clave
Diagnosis
Bearing faults
Intelligent estimation
Three-phase induction motor
Diagnóstico
Fallas en rodamientos
Estimación inteligente
Revisión por pares
SI
Patrocinador
CAPES (process BEX552269/2011-5)
National Council for Scientific and Technological Development (grant #474290/2008-3, #473576/2011-2, #552269/2011-5, #307220/2016-8)
National Council for Scientific and Technological Development (grant #474290/2008-3, #473576/2011-2, #552269/2011-5, #307220/2016-8)
Version del Editor
Propietario de los Derechos
© 2020 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Dateien zu dieser Ressource
Solange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional