Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59068
Título
Integrating PCA and structural model decomposition to improve fault monitoring and diagnosis with varying operation points
Autor
Año del Documento
2023
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Engineering Applications of Artificial Intelligence, 2023, vol. 122, 106145
Résumé
Fast and efficient fault monitoring and diagnostics methods are essential for fault diagnosis and prognosis tasks in Health Monitoring Systems. These tasks are even more complicated when facing dynamic systems with multiple operation points. This article introduces a symbiotic solution for fault detection and isolation, based on the integration of two complementary techniques: Possible Conflicts (PCs), a model-based diagnosis technique from the Artificial Intelligence (AI) community, and Principal Component Analysis (PCA), a Multivariate Statistical Process Control (MSPC) technique. Our proposal improves the PCA-based fault detection in systems with multiple operation points and transient states and provides a straightforward fault isolation stage for PCA. At the same time, the proposal increases the robustness for fault detection using PCs through the application of PCA to the residual signals. PCA has the ability to filter out residual deviations caused by model uncertainties that can lead to a high number of false positives. The proposed method has been successfully tested in a real-world plant with accurate fault detection results. The plant has noisy sensors and a system model without the same accuracy at each operation point and transient states.
Materias (normalizadas)
inteligencia artificial
Informática
Materias Unesco
1203.17 Informática
Palabras Clave
Multivariate Statistical Process Control
Fault diagnosis
Multiple Operation Points Systems
Principal Component Analysis
Control Estadístico de Procesos Multivariante
Diagnóstico erroneo
Sistemas de Puntos de Operación Múltiple
Análisis de componentes principales
ISSN
0952-1976
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia e Innovación (PID2021-126659OB-I00)
Version del Editor
Propietario de los Derechos
© 2023 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional