• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Física Aplicada
    • DEP31 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Física Aplicada
    • DEP31 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59075

    Título
    Estimation of potato yield using satellite data at a municipal level: A machine learning approach
    Autor
    Salvador González, PabloAutoridad UVA Orcid
    Gómez, Diego
    Sanz Justo, María JuliaAutoridad UVA Orcid
    Casanova Roque, José LuisAutoridad UVA
    Año del Documento
    2020
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    ISPRS Int. J. Geo-Inf, 2020, vol.9, n. 6, 343
    Abstract
    Crop growth modeling and yield forecasting are essential to improve food security policies worldwide. To estimate potato (Solanum tubersum L.) yield over Mexico at a municipal level, we used meteorological data provided by the ERA5 (ECMWF Re-Analysis) dataset developed by the Copernicus Climate Change Service, satellite imagery from the TERRA platform, and field information. Five different machine learning algorithms were used to build the models: random forest (rf), support vector machine linear (svmL), support vector machine polynomial (svmP), support vector machine radial (svmR), and general linear model (glm). The optimized models were tested using independent data (2017 and 2018) not used in the training and optimization phase (2004–2016). In terms of percent root mean squared error (%RMSE), the best results were obtained by the rf algorithm in the winter cycle using variables from the first three months of the cycle (R2 = 0.757 and %RMSE = 18.9). For the summer cycle, the best performing model was the svmP which used the first five months of the cycle as variables (R2 = 0.858 and %RMSE = 14.9). Our results indicated that adding predictor variables of the last two months before the harvest did not significantly improved model performances. These results demonstrate that our models can predict potato yield by analyzing the yield of the previous year, the general conditions of NDVI, meteorology, and information related to the irrigation system at a municipal level.
    Materias (normalizadas)
    Física
    Teledetección
    Materias Unesco
    22 Física
    3103.04 Protección de Los Cultivos
    Palabras Clave
    Potato yield
    Meteorological data
    Satellite imagery
    Municipal level
    Rendimiento de patatas
    Datos meteorológicos
    Imágenes de satélite
    Ámbito municipal
    Revisión por pares
    SI
    DOI
    10.3390/ijgi9060343
    Version del Editor
    https://www.mdpi.com/2220-9964/9/6/343
    Propietario de los Derechos
    © 2020 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/59075
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP31 - Artículos de revista [166]
    Show full item record
    Files in this item
    Nombre:
    Estimation-of-Potato-Yield.pdf
    Tamaño:
    2.002Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10