Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59094
Título
A defined benefit pension plan game with Brownian and Poisson jumps uncertainty
Año del Documento
2023
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
European Journal of Operational Research, 2023,
vol. 310, pp. 1294-1311
Résumé
In this paper, we study the optimal management of an aggregated pension fund of defined benefit type by means of a differential game with two players, the firm and the participants. We assume that the fund wealth is greater than the actuarial liability and then the manager builds a pension fund surplus. In order to contemplate sudden changes in the financial market, the surplus can be invested in a portfolio with a bond and several risky assets where the uncertainty comes from Brownian motions and Poisson processes. The aim of the participants is to maximize a utility of the extra benefits. The game is analyzed in three scenarios. In the first, the aim of the firm is to maximize a utility of the fund surplus, in the second, to minimize the probability that the fund surplus reaches a low level, and in the third, to minimize the expected time of reaching a benchmark surplus. An infinite horizon is considered, and the game is solved by means of the dynamic programming approach. The influence of the jumps of the financial market on the Nash equilibrium strategies and the fund surplus is studied by means of a numerical illustration.
Materias (normalizadas)
Economía
Econometría
Probabilities
Materias Unesco
53 Ciencias Económicas
5302 Econometría
Palabras Clave
Finance
Pension funds management
Stochastic differential game
Markov Perfect Nash Equilibria
Finanzas
Gestión de fondos de pensión
Juego diferencial estocástico
Equilibrios perfectos de Nash de Markov
ISSN
0377-2217
Revisión por pares
SI
Propietario de los Derechos
© 2023 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional