Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59100
Título
Neurofeedback training based on motor imagery strategies increases EEG complexity in elderly population
Autor
Año del Documento
2021
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Entropy, 2021, Vol. 23, Nº. 12, 1574
Abstract
Neurofeedback training (NFT) has shown promising results in recent years as a tool to address the effects of age-related cognitive decline in the elderly. Since previous studies have linked reduced complexity of electroencephalography (EEG) signal to the process of cognitive decline, we propose the use of non-linear methods to characterise changes in EEG complexity induced by NFT. In this study, we analyse the pre- and post-training EEG from 11 elderly subjects who performed an NFT based on motor imagery (MI–NFT). Spectral changes were studied using relative power (RP) from classical frequency bands (delta, theta, alpha, and beta), whilst multiscale entropy (MSE) was applied to assess EEG-induced complexity changes. Furthermore, we analysed the subject’s scores from Luria tests performed before and after MI–NFT. We found that MI–NFT induced a power shift towards rapid frequencies, as well as an increase of EEG complexity in all channels, except for C3. These improvements were most evident in frontal channels. Moreover, results from cognitive tests showed significant enhancement in intellectual and memory functions. Therefore, our findings suggest the usefulness of MI–NFT to improve cognitive functions in the elderly and encourage future studies to use MSE as a metric to characterise EEG changes induced by MI–NFT.
Materias (normalizadas)
Biofeedback training
Entrenamiento de biorretroalimentación
Entropía
Brain-computer interfaces
Older people - Care
Personas de edad - Salud mental
Cognición
Neuropsychology
Neuropsicología
Materias Unesco
3201.07 Geriatría
3205.07 Neurología
Palabras Clave
Neurofeedback training
Motor imagery
ISSN
1099-4300
Revisión por pares
SI
Patrocinador
Ministerio de Ciencia e Innovación (Grants PID2020-115468RB-I00 and RTC2019- 007350-1)
Gobierno de España (Agencia Estatal de Investigación) - (Projects 10.13039/ 501100011033)
Unión Europea y Fondo Europeo de Desarrollo Regional (FEDER) - (Cooperation Programme Interreg V-A Spain-Portugal POCTEP 2014–2020)
Gobierno de España (Agencia Estatal de Investigación) - (Projects 10.13039/ 501100011033)
Unión Europea y Fondo Europeo de Desarrollo Regional (FEDER) - (Cooperation Programme Interreg V-A Spain-Portugal POCTEP 2014–2020)
Version del Editor
Propietario de los Derechos
© 2021 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
Tamaño:
8.749Mb
Formato:
Adobe PDF
La licencia del ítem se describe como Atribución 4.0 Internacional