Mostrar el registro sencillo del ítem

dc.contributor.authorRodrigues, Ana Sofia
dc.contributor.authorCiríaco, Lurdes
dc.contributor.authorPacheco, Maria José
dc.contributor.authorFernandes, Annabel
dc.contributor.authorMogo, Sandra
dc.contributor.authorLopes, Ana
dc.date.accessioned2023-04-13T12:43:58Z
dc.date.available2023-04-13T12:43:58Z
dc.date.issued2021
dc.identifier.citationNanomaterials, 2021, Vol. 11, Nº. 11, 3142es
dc.identifier.issn2079-4991es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/59102
dc.descriptionProducción Científicaes
dc.description.abstractPerovskites of the (La,Ba)(Fe,Ti)O3 family were prepared, characterized, and utilized as heterogeneous photocatalysts, activated by natural sunlight, for environmental remediation of Acid Orange 7 (AO7) aqueous solutions. Catalysts were prepared by the ceramic (CM) and the complex polymerization (CP) methods and characterized by XRD, SEM, EDS, and band gap energy. It was found that catalytic properties depend on the synthesis method and annealing conditions. In the photocatalytic assays with sunlight, different AO7 initial concentrations and perovskite amounts were tested. During photocatalytic assays, AO7 and degradation products concentrations were followed by HPLC. Only photocatalysis with BaFeO3-CM and BaTiO3-CP presented AO7 removals higher than that observed for photolysis. However, photolysis leads to the formation of almost exclusively amino-naphthol and sulfanilic acid, whereas some of the perovskites utilized form less-toxic compounds as degradation products, such as carboxylic acids (CA). Partial substitution of Ba by La in BaTiO3-CM does not produce any change in the photocatalytic properties, but the replacement of Ti by Fe in the La0.1Ba0.9TiO3 leads to reduced AO7 removal rate, but with the formation of CAs. The best AO7 removal (92%) was obtained with BaFeO3-CM (750 mg L−1), after 4 h of photocatalytic degradation with solar radiation.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectPerovskitees
dc.subjectPhotocatalysises
dc.subjectSolar lightes
dc.subjectPolymerizationes
dc.subject.classificationAO7es
dc.subject.classificationCeramic methodes
dc.titleSunlight-driven AO7 degradation with perovskites (La,Ba)(Fe,Ti)O3 as heterogeneous photocatalystses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 The authorses
dc.identifier.doi10.3390/nano11113142es
dc.relation.publisherversionhttps://www.mdpi.com/2079-4991/11/11/3142es
dc.identifier.publicationfirstpage3142es
dc.identifier.publicationissue11es
dc.identifier.publicationtitleNanomaterialses
dc.identifier.publicationvolume11es
dc.peerreviewedSIes
dc.description.projectFundação para a Ciência e a Tecnologia (FCT) (Project UIDB/00195/2020 and Grant SFRH/BD/109901/ 2015)es
dc.identifier.essn2079-4991es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem