• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Departamentos
    • Dpto. Ingeniería Agrícola y Forestal
    • DEP42 - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59416

    Título
    A step to smart fishways: An autonomous obstruction detection system using hydraulic modeling and sensor networks
    Autor
    Fuentes Pérez, Juan FranciscoAutoridad UVA Orcid
    García Vega, AnaAutoridad UVA Orcid
    Bravo Cordoba, Francisco JavierAutoridad UVA
    Sanz Ronda, Francisco JavierAutoridad UVA Orcid
    Año del Documento
    2021
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Sensors, 2021, vol. 21, n. 20, 6909
    Zusammenfassung
    Stepped fishways are structures that allow the free movement of fish in transversal obstacles in rivers. However, the lack of or incorrect maintenance may deviate them from this objective. To handle this problem, this research work presents a novel low-cost sensor network that combines fishway hydraulics with neural networks programmed in Python (Keras + TensorFlow), generating the first autonomous obstruction/malfunction detection system for stepped fishways. The system is based on a network of custom-made ultrasonic water level nodes that transmit data and alarms remotely and in real-time. Its performance was assessed in a field study case as well as offline, considering the influence of the number of sensing nodes and obstruction dimensions. Results show that the proposed system can detect malfunctions and that allows monitoring of the hydraulic performance of the fishway. Consequently, it optimizes the timing of maintenance on fishways and, thus, has the potential of automatizing and reducing the cost of these operations as well as augmenting the service of these structures. Therefore, this novel tool is a step forward to achieve smart fishway management and to increase their operability.
    Materias (normalizadas)
    Piscicultura
    Cursos de Agua
    Materias Unesco
    3105.04 Protección de Los Peces
    3199 Otras Especialidades Agrarias
    Palabras Clave
    Water-level sensors
    Hydraulic modeling
    Fishways
    Sensores de nivel de agua
    Modelado hidráulico
    Escalas de peces
    Revisión por pares
    SI
    DOI
    10.3390/s21206909
    Patrocinador
    European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Smart fishways—grant agreement n° 101032024)
    Patrocinador
    info:eu-repo/grantAgreement/EC/H2020/101032024
    Version del Editor
    https://www.mdpi.com/1424-8220/21/20/6909
    Propietario de los Derechos
    © 2021 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/59416
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP42 - Artículos de revista [291]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    A-Step-to-Smart-Fishways.pdf
    Tamaño:
    3.846Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Atribución 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10