Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59416
Título
A step to smart fishways: An autonomous obstruction detection system using hydraulic modeling and sensor networks
Autor
Año del Documento
2021
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Sensors, 2021, vol. 21, n. 20, 6909
Résumé
Stepped fishways are structures that allow the free movement of fish in transversal obstacles in rivers. However, the lack of or incorrect maintenance may deviate them from this objective. To handle this problem, this research work presents a novel low-cost sensor network that combines fishway hydraulics with neural networks programmed in Python (Keras + TensorFlow), generating the first autonomous obstruction/malfunction detection system for stepped fishways. The system is based on a network of custom-made ultrasonic water level nodes that transmit data and alarms remotely and in real-time. Its performance was assessed in a field study case as well as offline, considering the influence of the number of sensing nodes and obstruction dimensions. Results show that the proposed system can detect malfunctions and that allows monitoring of the hydraulic performance of the fishway. Consequently, it optimizes the timing of maintenance on fishways and, thus, has the potential of automatizing and reducing the cost of these operations as well as augmenting the service of these structures. Therefore, this novel tool is a step forward to achieve smart fishway management and to increase their operability.
Materias (normalizadas)
Piscicultura
Cursos de Agua
Materias Unesco
3105.04 Protección de Los Peces
3199 Otras Especialidades Agrarias
Palabras Clave
Water-level sensors
Hydraulic modeling
Fishways
Sensores de nivel de agua
Modelado hidráulico
Escalas de peces
Revisión por pares
SI
Patrocinador
European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Smart fishways—grant agreement n° 101032024)
Patrocinador
info:eu-repo/grantAgreement/EC/H2020/101032024
Version del Editor
Propietario de los Derechos
© 2021 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Fichier(s) constituant ce document
Excepté là où spécifié autrement, la license de ce document est décrite en tant que Atribución 4.0 Internacional